На правах рукописи

Яковлев Данила Алексеевич

# КОНФОРМАЦИОННАЯ ДИНАМИКА УРАЦИЛ-ДНК-ГЛИКОЗИЛАЗ ЧЕЛОВЕКА SMUG1 И MBD4 В ПРОЦЕССЕ ВЗАИМОДЕЙСТВИЯ С ДНК

1.5.4 – биохимия

Автореферат диссертации на соискание учёной степени кандидата химических наук

Новосибирск – 2021

Работа выполнена в Институте химической биологии и фундаментальной медицины СО РАН

| Научные      | Кузнецов Никита Александрович, д.х.н.       |  |  |
|--------------|---------------------------------------------|--|--|
| руководители | Федорова Ольга Семеновна, д.х.н., профессор |  |  |

Официальные оппоненты

Кубарева Елена Александровна, д.х.н., профессор Научно-исследовательский институт физико-химической биологии имени А. Н. Белозерского Московского государственного университета имени М. В. Ломоносова, главный научный сотрудник

Жарков Дмитрий Олегович, д.б.н., профессор, чл.-корр. РАН Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», зав. лабораторией

#### Смирнов Иван Витальевич, д.х.н.

Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, зав. лабораторией

Защита диссертации состоится «2» июля 2021 г. в 12.00 на заседании диссертационного совета ИХБФМ 02.01 при Институте химической биологии и фундаментальной медицины СО РАН по адресу: Новосибирск 630090, пр. акад. Лаврентьева, 8

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Институт химической биологии и фундаментальной медицины СО РАН и на сайте www.niboch.nsc.ru.

Автореферат разослан «\_\_» \_\_\_\_ 2021 г.

Учёный секретарь диссертационного совета, к.х.н., доцент

Коваль В. В. A

## ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Урацил – одно из наиболее распространенных повреждений ДНК, которое образуется либо при дезаминировании цитозина: как спонтанном, так и ферментативном, либо при ошибочной вставке остатка уридина во время репликации. Такие повреждения являются сильно мутагенными из-за того, что ДНК-полимеразы не различают урацил и тимин в ДНК. Таким образом, U:G-пара при дальнейшей репликации приводит к образованию замены C:G → T:A в одной из дочерних цепей.

Урацил в ДНК человека узнается и удаляется несколькими ДНК-гликозилазами: урацил-ДНК-гликозилазой (UNG2), тимин-ДНК-гликозилазой (TDG), специфичной к одноцепочечной ДНК монофункциональной урацил-ДНК-гликозилазой (SMUG1) и метил-СрG-связывающим ферментом 4 (MBD4). Эти ДНК-гликозилазы принадлежат к разным структурным семействам: Udg (UNG2, TDG, SMUG1) и HhH (MBD4). Для многих ДНКгликозилаз показано, что конформационная динамика самих ферментов и их ДНК-субстратов имеют большое значение для удаления поврежденных оснований.

ДНК-гликозилазы SMUG1 и MBD4 играют решающую роль как в репарации, так и в деметилировании ДНК – важного этапа эпигенетической регуляции экспрессии генов. Несмотря на близкую субстратную специфичность, эти ферменты проявляют разную каталитическую активность. Поэтому актуальными являются исследования предстационарной кинетики и конформационной динамики SMUG1 и MBD4 и их ДНК-субстратов в ходе взаимодействия с целью выяснения механизмов, обеспечивающих субстратную специфичность и каталитическую активность ферментов репарации.

Цель работы – установление кинетических механизмов конформационных переходов в молекулах фермента и ДНК в процессах, катализируемых урацил-ДНК-гликозилазами человека MBD4 и SMUG1, и выявление общих закономерностей процессов образования каталитически активных комплексов ферментами, принадлежащими к разным структурным семействам. Для выполнения поставленной цели были решены следующие задачи:

- Изучить конформационную динамику ферментов MBD4 и SMUG1 (дикого типа и мутантных форм F98W, H239A и R243A) и ДНК в процессе их взаимодействия методом «остановленного потока» с регистрацией изменений интенсивности флуоресценции остатков триптофана в белке, а также флуоресцентных и FRET-меток, введенных в ДНК.
- С помощью методов моделирования по гомологии и молекулярной динамики получить структуры комплексов SMUG1 дикого типа и

мутантных форм (F98W, H239A, R243A), с ДНК и установить роль данных аминокислотных остатков в процессах специфического узнавания повреждения и катализа.

- Используя последовательное усложнение ДНК-субстратов и увеличение их длины изучить влияние длины ДНК-дуплекса на кинетику связывания MBD4 с ДНК и удаления повреждения.
- На основании совокупности теоретических и экспериментальных данных предложить кинетический механизм конформационных превращений в процессе взаимодействия ферментов MBD4 и SMUG1 с поврежденной ДНК.

#### Положения, выносимые на защиту:

- 1. Образование каталитически компетентных комплексов ферментов человека SMUG1 и MBD4 сопровождается взаимными последовательными конформационными превращениями белка и ДНК-субстрата.
- Аминокислотные остатки Phe98 и His239 фермента SMUG1 играют важную роль в катализе. Аминокислотный остаток Arg243 не является каталитически значимым, но играет важную роль в субстратной специфичности фермента.
- 3. Изменение длины ДНК-субстрата фермента MBD4 влияет только на скорость поиска повреждения, но не на скорость дальнейших конформационных перестроек фермент-субстратного комплекса.
- 4. ДНК-гликозилазы SMUG1 и MBD4, принадлежащие к разным структурным семействам, проявляют схожие механизмы узнавания поврежденного основания, включающие изгибание ДНК-дуплекса, выворачивание поврежденного нуклеотида из двойной спирали ДНК и встраивание в неё аминокислотных остатков фермента.

Научная новизна и практическая значимость работы. Методом «остановленного потока» в режиме реального времени изучена конформационная динамика взаимодействия ферментов SMUG1 и MBD4 с ДНКсубстратами. Показано, что в ходе образования и превращения ферментсубстратных комплексов происходят конформационные изменения как в молекулах белков, так и ДНК-субстратов. Методом моделирования по гомологии с последующей оптимизацией методом молекулярной динамики получены структуры комплексов ферментов человека SMUG1 и MBD4 с ДНК.

Сопоставление результатов исследования конформационной динамики ферментов и ДНК со структурами их комплексов позволило установить роль отдельных аминокислотных остатков SMUG1 в процессе узнавания повреждения и гидролиза *N*-гликозидной связи, изучить влияние длины субстрата на кинетику взаимодействия MBD4 с ДНК и предложить детальные механизмы взаимодействия SMUG1 и MBD4 с ДНК. Полученные результаты вносят вклад в понимание механизмов репарации и деметилирования ДНК.

Публикации и апробация работы: по материалам диссертации опубликовано 4 научные статьи, индексируемые в базах Web of science и Scopus.

Результаты диссертации были представлены на российских и международных конференциях: VII Всероссийский симпозиум «Белки и пептиды» (Новосибирск, 2015); «Химическая биология 2016» (Новосибирск, 2016); «42<sup>nd</sup> FEBS Congress» (Иерусалим, Израиль, 2017); VIII симпозиум «Белки и пептиды» (Москва, 2017); «43<sup>rd</sup> FEBS Congress» (Прага, Чехия, 2018); IX симпозиум «Белки и пептиды» (Сочи, 2019).

Структура и объем работы: диссертация состоит из введения, обзора литературы, материалов и методов, результатов, их обсуждения, заключения и списка литературы. Работа изложена на 114 страницах, содержит 64 рисунка, 11 таблиц и 9 схем. Библиография включает 181 литературный источник.

## СОДЕРЖАНИЕ РАБОТЫ

### Структуры субстратов и методы исследования кинетики

В качестве специфических субстратов урацил-ДНК-гликозилаз SMUG1 и MBD4 использовали олигодезоксирибонуклеотидные дуплексы, содержащие остаток уридина (U), в качестве неспецифических субстратов MBD4 использовали неповрежденные дуплексы. Аналогами продукта служили олигонуклеотидные дуплексы, содержащие остаток 2-гидроксиметил-3-гидрокситетрагидрофурана (F). Последовательности всех использованных в работе олигодезоксирибонуклеотидов представлены в Таблице 1.

Изменения конформации фермента регистрировали по изменению флуоресценции триптофана. Изменения конформации олигодезоксирибонуклеотидов регистрировали по изменению интенсивности флуоресценции флуорофора 2-аминопурина (aPu), который помещали с 3'-стороны от повреждения, либо FRET-пары FAM–BHQ1. Флуорофор FAM располагали на 5'-конце олигонуклеотида, содержащего повреждение, а тушитель BHQ1 - на 3'-конце комплементарной цепи. Структуры использованных модифицированных нуклеотидов и флуорофоров изображены на Puc. 1.



Рисунок 1. Структуры использованных в работе модифицированных нуклеотидов.

| X/G12     | 5´-CTCTC <b>X</b> CCTTCC-3´                                                                |
|-----------|--------------------------------------------------------------------------------------------|
| X=U, F    | 3´-GAGAG <b>G</b> GGAAGG-5´                                                                |
| X/G17     | 5´-GCTC <b>AXG</b> TACAGAGCTG-3´                                                           |
| X=U, F, C | 3´-CGAG <b>TGC</b> ATGTCTCGAC-5´                                                           |
| U/G28     | 5´-GTGTCACCACTGCTC <b>AUG</b> TACAGAGCTG-3´<br>3´-CACAGTGGTGACGAG <b>TGC</b> ATGTCTCGAC-5´ |
| FaPu12    | 5´-CTCTC <b>FaPu</b> CTTCC-3´<br>3´-GAGA <b>GG C</b> GAAGG-5´                              |
| XaPu17    | 5´-GCTC <b>AXaPu</b> TACAGAGCTG-3´                                                         |
| X=U, F    | 3´-CGAG <b>TG C</b> ATGTCTCGAC-5´                                                          |
| FRET-X    | 5´- <b>FAM</b> -GCTC <b>AXG</b> TACAGAGCTG-3´                                              |
| X=U, F, C | 3´-CGAG <b>TGC</b> ATGTCTCGAC <b>-BHQ1</b> -5´                                             |

Таблица 1. ДНК-субстраты и ДНК-лиганды, использованные в работе.

Для регистрации изменений интенсивности флуоресценции реакционной смеси использовали метод «остановленного потока», позволяющий смешивать компоненты реакционной смеси за ~1 мс и наблюдать процессы на временах от нескольких миллисекунд до тысяч секунд.

Зависимости интенсивности флуоресценции от времени, отражающие конформационные превращения в ходе фермент-субстратного взаимодействия, анализировали в программе DynaFit, используя метод градиентного спуска, путем оптимизации значений параметров системы дифференциальных уравнений, соответствующих предлагаемым кинетическим схемам. Параметры представляли собой константы скорости и коэффициенты удельной флуоресценции всех флуоресцирующих форм (Kuznetsov N. A., 2005).

# Моделирование структур комплексов MBD4 и SMUG1 с ДНК

### SMUG1

*Модель структуры свободного SMUG1* дикого типа получена методом моделирования по гомологии с использованием фермента SMUG1 *X. laevis* в качестве шаблона.

Моделирование структуры комплекса SMUG1 с ДНК. В качестве шаблона для моделирования была взята структура TDG человека в комплексе с ДНК-дуплексом (PDB ID: 5T2W), часть нуклеотидов в котором была удалена, а поврежденное основание заменено на U, что дало в точности модельный субстрат U/G17 (Таблица 1). Начальная модель комплекса SMUG1 с ДНК была сконструирована из комбинации модели свободного SMUG1 и ДНК из структуры 5T2W. Геометрию системы оптимизировали методом молекулярной динамики в течение 10 нс. Полученная структура была модифицирована для получения структур комплексов SMUG1 F98W, H239A и R243A с ДНК. Структуры комплексов мутантных форм SMUG1 так же оптимизировали в течение 10 нс, и затем использовали в дальнейшем анализе.

В результате моделирования показано, что фермент изменяет свою конформацию при связывании с ДНК: боковая цепь остатка Arg243, входящего в состав интеркалирующей петли, встраивается в полость ДНК, образованную вывернутым из двойной спирали основанием, а остатки активного центра, в том числе, Phe98 и His239, меняют свое положение, формируя карман, связывающий вывернутое основание (Рис. 2).

Замена Phe98 на Trp, по-видимому, приводит к нарушению стэкинг-взаимодействия с остатком урацила в активном центре, блокируя тем самым образование каталитической компетентной конформации (Puc. 2A). В то же время мутация H239A не приводит к значительным нарушениям геометрии области взаимодействия белка и ДНК, но уменьшает положительный заряд на поверхности ДНК-связывающего кармана, что должно ухудшать связывание белка с отрицательно заряженным сахарофосфатным остовом.

Замена R243A также приводит к потере значительного числа межмолекулярных водородных связей с ДНК (Рис. 2Б). При этом структура фермент-субстратного комплекса не претерпевает значительных изменений, что свидетельствует о том, что, несмотря на образование многочисленных контактов Arg243 с основаниями ДНК, эта аминокислота не является ключевым остатком, участвующим в стабилизации вывернутого состояния поврежденного основания.



Рисунок 2. Структурное выравнивание SMUG1 дикого типа и мутантных форм. А. Детализация Phe98 и His239 в активном центре. Б. Область контакта интеркалирующей петли с ДНК. Водородные связи показаны пунктирными черными линиями.

#### MBD4

Для каталитического домена (426–580 а.а.) белка MBD4 известен ряд кристаллических структур, как для свободной формы, так и для комплекса MBD4<sup>cat</sup>–ДНК. В ходе работы было проведено моделирование структуры комплекса фермента с U/G17-субстратом, который использовался в нашем исследовании. Эта модель позволила точнее описать структурное взаимодействие между ДНК и белком и получить представление о геометрии ключевых аминокислотных остатков MBD4<sup>cat</sup> и ДНК в описываемом комплексе (Рис. 3).



Рисунок 3. Модель структуры комплекса MBD4<sup>cat</sup> с ДНК-субстратом U/G17. A: общий вид, MBD4<sup>cat</sup> изображен в виде зеленой поверхности доступности растворителя, ДНК-дуплекс в виде серой спирали, вывернутое основание в виде красной шаростержневой модели. **Б**: Строение активного центра MBD4<sup>cat</sup>, водородные связи изображены в виде черных пунктирных линий.

Карман активного центра MBD4<sup>cat</sup> связывает вывернутый нуклеотид не со всех сторон: атомы O<sup>4</sup>, C5, C6, O4' и 5'-фосфатная группа контактируют с растворителем (Рис. 3А). Более свободная организация кармана активного центра по сравнению с SMUG1 обеспечивает более широкую субстратную специфичность: атомы C5 и C6 могут иметь достаточно

объемные модификации, как, например, в случае повреждений 5-йод-урацил (5IU) или тимингликоль (Tg).

MBD4<sup>cat</sup> образует контакты с областью ДНК с –3 по +1 нуклеотид от поврежденного основания. В случае достаточно длинных субстратов (> 10 п. н.) такая небольшая область контакта вынуждает фермент перемещаться по молекуле ДНК в поисках повреждения, при этом небольшое количество контактов, образующихся в ходе взаимодействий, не мешает перемещению, поэтому этот процесс должен быть достаточно быстрым.

## Влияние замен SMUG1 F98W, H239A, R243A на каталитическую активность фермента

Чтобы установить роль остатков Phe98, His239 и Arg243 фермента в проявлении каталитической активности, исследовали зависимости степени превращения субстрата от времени соответствующими мутантными формами. Кинетику накопления продукта исследовали путем разделения реакционной смеси электрофорезом в ПААГ (Рис. 4) и описывали уравнением (1):

$$[P] = A(1 - e^{-k_{obs}t}), \tag{1}$$

в котором Р – продукт, А – начальная концентрация субстрата,  $k_{obs}$  - наблюдаемая константа скорости, t – время (с).



Б



Рисунок 4. (А) Кинетика накопления продукта реакции SMUG1 дикого типа и мутантных форм F98W, H239A и R243A в процессе взаимодействия с модельным ДНКдуплексом U/G17 и (Б) значения  $k_{obs}$ . [SMUG1] = 1.0 × 10<sup>-6</sup> M, [U/G17] = 5.0 × 10<sup>-6</sup> M.

Замены F98W и H239A приводят к практически полной потере активности фермента. В то же время замена R243A ведет к небольшому увеличению скорости реакции. Приведенные результаты согласуются с исследованием каталитической активности ортолога SMUG1 из Geobacter metallireducens (Mi R., 2009).

# Конформационная динамика взаимодействия SMUG1 WT и R243A с аналогом продукта

Для изучения механизма узнавания поврежденного основания ферментом SMUG1 регистрировали конформационные изменения в процессе взаимодействия фермента с продуктом гидролиза *N*-гликозидной связи субстрата. Для этого был использован модельный ДНК-дуплекс, содержащий тетрагидрофурановый аналог AP-сайта (F/G17-лиганд, Таблица 1).

Анализ изменений интенсивности флуоресценции остатков триптофана в белке (Рис. 5А), аРи в ДНК-лиганде (Рис. 5Б) и изменения FRET-сигнала (Рис. 5В) указывает на взаимосвязанные быстрые изменения конформации белка и ДНК с характерными временами ~ 100–200 мс. Падение интенсивности флуоресценции остатка аРи свидетельствует об образовании вокруг него гидрофобного окружения за счет взаимодействия с интеркалирующей петлей белка. Падение интенсивности FRET-сигнала указывает на уменьшение расстояния между флуорофорами, которое может происходить в результате изгибания молекулы ДНК при связывании с ферментом.



Рисунок 5. Кинетика взаимодействия SMUG1 WT (E) с ДНК-аналогом продукта F. A: изменение интенсивности флуоресценции остатков Trp фермента при разных концентрациях F/G17, **Б**: изменение интенсивности флуоресценции остатков aPu в F-aPu17 при разных концентрациях E, **B**: изменение FRET-сигнала в FRET-F при разных концентрациях E.

Изменения интенсивности флуоресценции Trp в SMUG1 WT при взаимодействии с F/G17 описываются Схемой 1:

Схема 1.

 $E + F_{\overline{k_{-1}}}^{\underline{k_1}} (E \cdot F)_1 \overline{k_{-2}}^{\underline{k_2}} (E \cdot F)_2$ 

где E – фермент, F – аналог продукта, (E·F)<sub>1</sub> и (E·F)<sub>2</sub> – комплексы фермента с продуктом N-гликозилазной реакции. Этой же Схемой 1 описывается кинетика связывания SMUG1 WT с аналогом продукта FaPu17 в случае регистрации изменений интенсивности флуоресценции aPu (Рис. 5Б).

При исследовании процесса связывания SMUG1 WT с аналогом продукта FRET-F анализ изменений интенсивности FRET-сигнала показал, что кинетический механизм может быть описан трехстадийной равновесной Схемой 2.

Схема 2 E + F $\frac{k_1}{k_{-1}}$ (E·F)<sub>1</sub> $\frac{k_2}{k_{-2}}$ (E·F)<sub>2</sub> $\frac{k_3}{k_{-3}}$ (E·F)<sub>3</sub>

В Таблице 2 представлены значения констант скорости и равновесия, соответствующие Схемам 1 и 2, описывающим взаимодействие SMUG1 WT с ДНК, содержащей F-сайт.

Таблица 2. Константы скорости и равновесия, соответствующие Схемам 1 и 2, описывающим взаимодействие SMUG1 WT с ДНК, содержащей F-сайт

|                                                                                                    | Флуорофор      |               |                   |  |
|----------------------------------------------------------------------------------------------------|----------------|---------------|-------------------|--|
| Константа                                                                                          | Trp (схема 1)  | aPu (схема 1) | FRET (схема 2)    |  |
| $k_1 \times 10^{-6}, M^{-1}c^{-1}$                                                                 | 120±30         | 130±10        | 200±50            |  |
| $k_{-1}, c^{-1}$                                                                                   | $1000 \pm 250$ | 490±60        | 650±70            |  |
| $K_1 \times 10^{-6}, M^{-1}$                                                                       | 0,12           | 0,26          | 0,31              |  |
| $k_2, c^{-1}$                                                                                      | 60±23          | 25±16         | 7,7±3,5           |  |
| $k_{-2}, c^{-1}$                                                                                   | 24±7           | 55±21         | 18,4±0,9          |  |
| K <sub>2</sub>                                                                                     | 2,5            | 0,45          | 0,42              |  |
| $K_1 \times K_2 \times 10^{-6}, M^{-1}$                                                            | 0,3            | 0,12          | 0,13              |  |
| $k_3, c^{-1}$                                                                                      |                |               | 0,13±0,02         |  |
| $k_{-3}, c^{-1}$                                                                                   |                |               | $0,067{\pm}0,004$ |  |
| K <sub>3</sub>                                                                                     |                |               | 1,9               |  |
| $\mathrm{K_{1}} 	imes \mathrm{K_{2}} 	imes \mathrm{K_{3}} 	imes \mathrm{10^{-6}}, \mathrm{M^{-1}}$ |                |               | 0,25              |  |

Как видно из Таблицы 2, значение  $k_1$  хорошо согласуется с величинами бимолекулярных диффузионно-контролируемых констант скорости образования комплексов белков с нуклеиновыми кислотами ~  $1 \times 10^8$  M<sup>-1</sup>c<sup>-1</sup> (Halford S. E., 2004). Поэтому 1-я обратимая стадия в Схемах 1 и 2 может быть отнесена к стадии образования первичного столкновительного комплекса, а 2я и 3-я стадии – к образованию специфических контактов между белком и нуклеиновой кислотой. Как следует из данных, полученных при регистрации флуоресценции Trp, сродство фермента к F-дуплексу увеличивается вследствие появления специфических контактов ( $K_2 = 2,5$ ), тогда как присутствие пары аPu/С вместо G/С снижает сродство в ~ 2 раза ( $K_2 = 0,45$ ), причем наличие FRET-пары на концах дуплекса практически не влияет на общее сродство к ДНК, поскольку произведение  $K_1 \times K_2 \times K_3 = 0,25$  близко по значению к  $K_1 \times K_2 =$ 0,3, полученному при регистрации флуоресценции Trp. Аналогичные эксперименты проводили с мутантной формой SMUG1 R243A (Рис. 6). При взаимодействии SMUG1 R243A с аналогом продукта F/G17 изменения интенсивности флуоресценции остатков Trp (Рис. 6A), описывались Схемой 1 (Таблица 3), как и в случае фермента дикого типа. Однако, при взаимодействии SMUG1 R243A с аналогом продукта FaPu17 кинетические кривые, представляли собой однофазное падение интенсивности флуоресценции aPu (Рис. 6Б) и описывались одностадийной Схемой 3.

Схема 3.  
E + F
$$\frac{k_1}{k_{-1}}$$
(E·F)

Кинетические кривые, зарегистрированные при наблюдении FRETсигнала в ходе взаимодействия SMUG1 R243A с FRET-F-лигандом, содержали две фазы падения интенсивности: в области (< 1 с) и в области ~ 10 с. Уменьшение FRET-сигнала отражает процесс связывания ДНК и может быть объяснено изгибанием ДНК, уменьшением расстояния FAM – BHQ1. Процесс взаимодействия SMUG1 R243A – ДНК описывался двухстадийной Схемой 1.

Константы скорости и равновесия, соответствующие кинетическим Схемам 1 и 3, описывающих взаимодействие SMUG1 R243A с ДНК, содержащей F-сайт, представлены в Таблице 3. Видно, что значения констант скорости в данном случае определяются с очень большой ошибкой.

|                                    | Флуорофор       |               |                |  |
|------------------------------------|-----------------|---------------|----------------|--|
| Константа                          | Trp (схема 1)   | aPu (схема 3) | FRET (схема 1) |  |
| $k_1 \times 10^{-6}, M^{-1}c^{-1}$ | 35±8            | 14±4          | 6±2            |  |
| $k_{-1}, c^{-1}$                   | $0,5{\pm}0,3$   | 5,4±1         | 30±7           |  |
|                                    |                 | 2,6           | 0,2            |  |
| $k_2, c^{-1}$                      | $0,011\pm0,008$ |               | $0,4{\pm}0,1$  |  |
| $k_{-2}, c^{-1}$                   | $0,07{\pm}0,02$ |               | 6±2            |  |
| $K_2, c^{-1}$                      |                 |               | 0,07           |  |
|                                    |                 |               |                |  |
| А                                  | Б               |               | В              |  |

Таблица 3. Константы скорости и равновесия, соответствующие Схемам 1 и 3, описывающих взаимодействие SMUG1 R243A с ДНК, содержащей F-сайт



10

Рисунок 6. Кинетика взаимодействия SMUG1 R243A (E) с аналогом продукта F. A: изменение флуоресценции остатков Trp при разных концентрациях F, **Б**: изменение интенсивности флуоресценции остатков aPu при разных концентрациях E, **B**: изменение FRET-сигнала при разных концентрациях E.

Тем не менее, из Таблицы 3 видно, что в случае SMUG1 R243A образование как неспецифического комплекса с F-лигандом  $(E \cdot F)_1$ , как и специфического комплекса  $(E \cdot F)_2$  происходит на порядок медленнее, чем в случае SMUG WT. Из этих данных следует, что аминокислота Arg243, расположенная в интеркалирующей петле SMUG1, играет роль в протекании стадий связывания с субстратом и формировании каталитически активного состояния фермента.

# Конформационная динамика взаимодействия SMUG1 WT и R243A с субстратом

Полный ферментативный цикл изучали, используя модельные ДНКсубстраты, содержащие остаток урацила (Таблица 1). В ходе ферментативной реакции происходит связывание фермента с субстратом, формирование каталитически компетентного комплекса, гидролиз *N*-гликозидной связи и диссоциация фермента с продуктом.

Изменения интенсивности флуоресценции Trp при взаимодействии SMUG1 WT с субстратом U/G17 (Рис. 7А) свидетельствовали о более сложном и многостадийном процессе, чем в случае аналога продукта F/G17. К стадиям быстрого связывания фермента с ДНК, которые наблюдались при взаимодействии с F-лигандами, добавилась фаза роста интенсивности флуоресценции Trp, отражающая, по-видимому, процесс гидролиза *N*-гликозидной связи.

Кинетика конформационных изменений в ДНК, полученная при регистрации интенсивности флуоресценции aPu в UaPu17 (Рис. 7Б) или FRETсигнала в случае FRET-U-субстрата (Рис. 7В), на начальном участке до 100 мс аналогична кинетике взаимодействия SMUG1 WT с аналогом продукта F/G17 (Рис 5Б, В). Кинетические кривые описывались Схемами 4-6, константы скорости соответствующих стадий представлены в Таблице 4.

Схема 4. Кинетический механизм связывания SMUG1 WT с ДНК-субстратом. Данные получены из наблюдения за изменением флуоресценции Trp.

$$\mathsf{E} + \mathsf{U}_{\overline{\mathsf{K}_{-1}}}^{\underline{\mathsf{K}_{1}}}(\mathsf{E} \cdot \mathsf{U})_{1} \overline{\mathbf{\mathsf{K}_{-2}}}(\mathsf{E} \cdot \mathsf{U})_{2} \xrightarrow{\mathsf{K}_{3}} (\mathsf{E} \cdot \mathsf{P})$$

Схема 5. Кинетический механизм связывания SMUG1 WT с ДНК-субстратом. Данные получены из наблюдения за изменением флуоресценции aPu.

$$\mathsf{E} + \mathsf{U}_{\overline{\mathsf{K}_{-1}}}^{\underline{\mathsf{k}_{1}}}(\mathsf{E} \cdot \mathsf{U})_{1}_{\overline{\mathbf{K}_{-2}}}^{\underline{\mathsf{k}_{2}}}(\mathsf{E} \cdot \mathsf{U})_{2}$$

Схема 6. Кинетический механизм связывания SMUG1 WT с ДНК-субстратом. Данные получены из наблюдения за изменением FRET-сигнала.



Рисунок 7. Кинетика взаимодействия SMUG1 WT с ДНК-субстратом. A: изменение интенсивности флуоресценции остатков Trp при разных концентрациях субстрата U/G17, **Б**: изменение интенсивности флуоресценции остатков aPu в субстрате UaPu17 при разных концентрациях фермента E, **B**: изменение FRET-сигнала в субстрате FRET-U при разных концентрациях фермента E.

Таблица 4. Константы скорости и равновесия, характеризующие взаимодействие SMUG1 WT с ДНК, содержащей урацил.

| Ψлуοрофор     |                                                                                                        |                                                                                                                                                      |  |
|---------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Trp (схема 4) | aPu (схема 5)                                                                                          | FRET (схема 6)                                                                                                                                       |  |
| 115±20        | 130±60                                                                                                 | 140±20                                                                                                                                               |  |
| 760±90        | 240±30                                                                                                 | 410±20                                                                                                                                               |  |
| 0,15          | 0,54                                                                                                   | 0,34                                                                                                                                                 |  |
| 30±8          | $15\pm8$                                                                                               | $3,6{\pm}0,8$                                                                                                                                        |  |
| $11,5\pm0,8$  | 25±6                                                                                                   | $9,7{\pm}0,2$                                                                                                                                        |  |
| 2,6           | 0,6                                                                                                    | 0,37                                                                                                                                                 |  |
| 0,39          | 0,32                                                                                                   | 0,13                                                                                                                                                 |  |
| 1,7±0,2       |                                                                                                        | $0,6{\pm}0,1$                                                                                                                                        |  |
|               |                                                                                                        | $0,11\pm0,02$                                                                                                                                        |  |
|               |                                                                                                        | 5,4                                                                                                                                                  |  |
|               |                                                                                                        | 0,68                                                                                                                                                 |  |
| 1,16          |                                                                                                        |                                                                                                                                                      |  |
| 2.0           |                                                                                                        |                                                                                                                                                      |  |
|               | Тгр (схема 4)<br>115±20<br>760±90<br>0,15<br>30±8<br>11,5±0,8<br>2,6<br>0,39<br>1,7±0,2<br>1,16<br>2,0 | Unyopogop   Trp (cxema 4) aPu (cxema 5)   115±20 130±60   760±90 240±30   0,15 0,54   30±8 15±8   11,5±0,8 25±6   2,6 0,6   0,39 0,32   1,7±0,2 1,16 |  |

$$k_{cat} = \frac{k_2 k_3}{k_2 + k_{-2} + k_3}$$
(2)

 $\langle \mathbf{n} \rangle$ 

$$K_{M} = \frac{k_{-1}k_{-2} + k_{-1}k_{3} + k_{2}k_{3}}{k_{1}(k_{2} + k_{-2} + k_{3})}$$
(3)

Сравнение констант скорости, полученных для взаимодействия SMUG1 с ДНК-дуплексами, содержащими урацил и F-сайт (Таблицы 2 и 4), показало, что образование как начальных столкновительных комплексов (E·U)<sub>1</sub>

и  $(E \cdot F)_1$ , так и специфических комплексов  $(E \cdot U)_2$  и  $(E \cdot F)_2$  и  $(E \cdot U)_3$  происходит с близкими по величине значениями констант скорости.

Аналогичные эксперименты с мутантной формой SMUG1 R243A (Рис. 8А) указывают на схожую картину конформационных превращений. Кинетические кривые изменения интенсивности флуоресценции триптофана свидетельствуют о протекании трехстадийного процесса: имеются две обратимые стадии связывания и необратимый гидролиз *N*-гликозидной связи, как и в случае фермента дикого типа (Схема 4). Кинетические кривые изменения флуоресценции аPu (Рис. 8Б) и FRET-сигнала (Рис. 8В) описываются Схемами 7 и 5, соответственно, и указывают только на конформационные перестройки в ДНК, происходящие на временах менее 1–3 с и, по-видимому, отражают лишь процесс связывания фермента с ДНК, но не гидролиза *N*-гликозидной связи.

Кинетические механизмы, соответствующие описываемым процессам представлены в виде Схем 4, 5 и 7, константы скорости соответствующих стадий приведены в Таблице 5.

Из кинетических данных следует, что если проанализировать полученные данные в рамках более привычной для биохимиков кинетической Схемы Михаэлиса-Ментен, то такой параметр, как каталитическая эффективность  $\binom{k_{cat}}{K_M}$ , оказывается равной 0,58 × 10<sup>6</sup> M·c<sup>-1</sup> для фермента дикого типа и 1,52 × 10<sup>6</sup> M·c<sup>-1</sup> для мутантной формы R243A (Таблицы 4 и 5). Следовательно, мутантная форма SMUG1 R243A обладает несколько более высокой каталитической активностью, чем фермент дикого типа, что подтверждается также результатами экспериментов, полученных методом электрофореза в ПААГ (Рис. 4). Однако образование фермент-субстратного комплекса в случае мутантной формы R243A происходит медленнее, чем у фермента дикого типа.

Схема 7. Взаимодействие SMUG1 R243A с ДНК-субстратом. Данные получены из наблюдения за изменением флуоресценции aPu.



Рисунок 8. Взаимодействие SMUG1 R243A с ДНК-субстратом. А: изменение флуоресценции остатков Trp, Б: изменение флуоресценции остатков aPu, B: изменение FRET-сигнала.

| Таблица 5. Конст | анты скорости и рае | новесия, соотве | тствующие в   | ззаимодействию |
|------------------|---------------------|-----------------|---------------|----------------|
|                  |                     | SMUG1 R243A     | 1 с ДНК, соде | ржащей урацил. |

|                                         | Флуорофор     |                 |                 |  |
|-----------------------------------------|---------------|-----------------|-----------------|--|
| Константа                               | Trp (схема 4) | аРи (схема 7)   | FRET (схема 5)  |  |
| $k_1 \times 10^{-6}, M^{-1}c^{-1}$      | 22±5          | 8±3             | 1,2±0,2         |  |
| $k_{-1}, c^{-1}$                        | $2,2{\pm}0,6$ | $0,19{\pm}0,07$ | 8±1             |  |
| $K_1 \times 10^{-6}, M^{-1}$            | 10            | 41,6            | 0,16            |  |
| $k_2, c^{-1}$                           | 9±3           |                 | $1,7\pm0,3$     |  |
| $k_{-2}, c^{-1}$                        | $0,8{\pm}0,1$ |                 | $0,64{\pm}0,06$ |  |
| K <sub>2</sub>                          | 11,1          |                 | 2,66            |  |
| $K_1 \times K_2 \times 10^{-6}, M^{-1}$ | 111           |                 | 0,43            |  |
| $k_3, c^{-1}$                           | 2,0±0,3       |                 |                 |  |
| $k_{cat}, c^{-1}(2)$                    | 1,52          |                 |                 |  |
| $K_M \times 10^{-6}, M (3)$             | 1,0           |                 |                 |  |

Таким образом, образование первичного столкновительного комплекса мутантной формы SMUG1 R243A с U-субстратом, протекает на порядок медленнее, чем в случае природного фермента, как это наблюдалось для связывания F-лигандов. Этот факт указывает на то, интеркалирующая петля фермента, в которой находится остаток Arg243, принимает участие во взаимодействии с ДНК на самой начальной стадии процесса. Замена Arg243Ala влияет только на скорость обнаружения поврежденного основания, а не эффективность его удаления.

# Общий механизм удаления повреждения ферментом SMUG1

Общий кинетический механизм (Схема 8) включает две обратимые стадии, характеризующие образование каталитически компетентного комплекса. Первичное связывание включает встраивание интеркалирующей петли фермента в ДНК-дуплекс, согласованное с локальным плавлением ДНК и выворачиванием повреждения из дуплекса (Рис. 9).

На второй стадии формируется каталитически активный комплекс, в котором аминокислотные остатки интеркалирующей петли полностью встраиваются в ДНК и образуют все возможные контакты с вывернутым нуклеотидом, включая контакты His239 с фосфатными группами. Каталитическая реакция протекает на третьей стадии взаимодействия.

Каталитическая активность SMUG1 дикого типа и мутантной формы R243A примерно одинакова:  $k_3 = 1,7 \text{ c}^{-1}$  и 2,0 с<sup>-1</sup>, соответственно. Однако скорости 1-ой и 2-ой стадий, характеризующие связывание и узнавание субстрата, в случае SMUG1 WT существенно выше, чем в случае

мутантной формы R243A. Поскольку эти стадии не являются лимитирующими, то снижение скорости образования комплексов с субстратом мутантной формы SMUG1 R243A в целом, не влияет на скорость ферментативного процесса.

Схема 8.



Рисунок 9. Общий кинетический механизм удаления повреждения ферментом SMUG1.

Таким образом, полученные результаты позволяют заключить, что аминокислотный остаток Arg243 принимает участие в узнавании поврежденного нуклеотида, но не важен для протекания каталитической стадии, остаток His239 необходим как для узнавания поврежденного нуклеотида, так и для катализа. Замена Phe98 на более объемный Trp нарушает архитектуру активного центра и инактивирует фермент.

### Конформационная динамика взаимодействия метил-СрGсвязывающего фермента человека MBD4 с ДНК

Для того, чтобы идентифицировать природу конформационных изменений фермента и ДНК, происходящих в процессе связывания продукта ферментативной реакции, содержащего АР-сайт, был использован его стабильный аналог F-сайт.

Кинетические кривые изменения интенсивности флуоресценции остатков триптофана при взаимодействии MBD4<sup>cat</sup> и лиганда F/G12 имеют многофазный профиль и характеризуют процесс первичного связывания и дальнейшую перестройку конформации фермента (Рис. 10). Полученные кинетические данные удовлетворительно описываются двухстадийной кинетической Схемой Error! Reference source not found., как и для фермента SMUG1.



Рисунок 10. А. Изменение интенсивности флуоресценции остатков Trp при взаимодействии MBD4<sup>cat</sup> и лиганда F/G12 (концентрация ДНК изменяется в диапазоне 1 – 4 мкМ, концентрация MBD4<sup>cat</sup> постоянна и равна 2 мкМ). Б. Изменение интенсивности флуоресценции остатков аРи при взаимодействии MBD4<sup>cat</sup> и лиганда FaPu12 (концентрация ДНК постоянна (1 мкМ), концентрация MBD4<sup>cat</sup> изменяется от 0,5 до 3 мкМ). Кинетические кривые: экспериментальные (цветные линии) и теоретические (черные линии).

Изменения интенсивности флуоресценции 2-аминопурина лиганда FaPu12 (Рис. 10) на временах ~2 с удовлетворительно описываются одностадийной кинетической Схемой 3.

Можно отметить, что минимуму на кинетических кривых изменения интенсивности флуоресценции триптофана соответствует падение интенсивности флуоресценции 2-аминопурина (Рис. 10), что указывает на синхронность процесса конформационной перестройки фермента и ДНК.

На Рис. 11А представлены кинетические кривые, характеризующие процесс взаимодействия MBD4<sup>cat</sup> с двенадцатизвенным субстратом U/G12 и соответствующие изменению интенсивности флуоресценции триптофана. Видно, что имеются две стадии: падение интенсивности (10–500 мс) и рост (0,5–10 с) с выходом на плато.



16

Рисунок 11. А: Изменение флуоресценции остатков Trp при взаимодействии MBD4<sup>cat</sup> с субстратом U/G12 (экспериментальные кинетические кривые (цветные линии) и теоретические кривые (черные линии). Концентрация белка постоянна (2 мкМ), концентрация U/G12 изменяется от 1 до 3 мкМ. Б: Накопление продукта реакции MBD4<sup>cat</sup> с субстратом U/G12 (0 с, 10 с, 30 с, 60 с, 120 с, 240 с, 480 с, 960 с, 1360 с и 2400 с) для разных концентраций фермента (2, 4, 10 и 20 мкМ). Концентрация ДНК постоянна и равна 1 мкМ.

Время накопления заметного количества продуктов реакции составляет не менее 500 с (Рис. 11Б), что значительно превышает временной интервал наблюдения в эксперименте методом «остановленного потока». Поэтому на кинетических кривых, полученных этим методом, отсутствовала каталитическая стадия, и данные описывались Схемой 5.

В то же время для субстратов большей длины (17 и 28 пар оснований) форма кинетических кривых (Рис. 12) несколько отличается: падение более растянуто во времени (минимум около 10 с) и имеет двухфазный характер (медленное падение на 10–100 мс и более быстрое на 0,1–10 с). Такой процесс взаимодействия уже нельзя описать двухстадийным механизмом.

Из анализа кинетических кривых (Рис. 12) можно сделать вывод о наличии, как минимум, четырех стадий в кинетическом механизме взаимодействия MBD4<sup>cat</sup> с более длинными ДНК-субстратами: двух стадий первичного связывания, стадии гидролиза *N*-гликозидной связи (необратимая) и диссоциации фермента и ДНК-продукта, как и в случае фермента SMUG1 (Схема 8).





Рисунок 12. **А, Б**. Экспериментальные (цветные) и теоретические (черные) кинетические кривые, характеризующие изменение интенсивности флуоресценции остатков Trp, полученные при взаимодействии MBD4<sup>cat</sup> с разными концентрациями субстратов U/G17 (A) и U/G28 (Б). Концентрация белка постоянна (2 мкМ), концентрация субстратов изменяется от 1 до 4 мкМ. **В, Г**. Кинетические кривые накопления продукта реакции при взаимодействии MBD4<sup>cat</sup> с соответствующими субстратами. Концентрация субстрата изменяется от 0,25 до 6 мкМ. Концентрация фермента постоянна (4 мкМ).

### Общий механизм удаления повреждения ферментом MBD4<sup>cat</sup>

Основываясь на результатах эксперимента и последующих расчетов, можно предположить, каким процессам соответствуют определенные стадии кинетического механизма, описываемого Схемой 8. Так, стадия 1 ( $k_{1/-}$ ), скорее всего, указывает на формирование неспецифического комплекса фермент-ДНК и движение по цепи с поиском поврежденного основания. В этом процессе прослеживается зависимость скорости от длины субстрата – чем больше нуклеотидов, тем медленнее поиск. На стадии 2 ( $k_{2/-2}$ ) происходит «узнавание» субстрата и формирование каталитически компетентного комплекса. Стадия 3 – необратимый гидролиз *N*-гликозидной связи, стадия 4 – диссоциация фермента и продукта реакции – ДНК, содержащей АР-сайт.

|                                        | U/G12           | U/G17             | U/G28             | F/G12           | FaPu12            |
|----------------------------------------|-----------------|-------------------|-------------------|-----------------|-------------------|
| Схема                                  | 5               | 8                 | 8                 | 1               | 3                 |
| $k_1 \times 10-6$ , M-1c <sup>-1</sup> | 0.5±0.2         | 12±3              | 7±2               | 11±4            | $0.48{\pm}0.02$   |
| $k_{-1}, c^{-1}$                       | $3.3 \pm 0.5$   | 43±16             | 26±7              | 8±4             | $0.002{\pm}0.001$ |
| $k_2, c^{-1}$                          | $0.18 \pm 0.04$ | 3±1               | 2.1±0.3           | $0.08 \pm 0.01$ |                   |
| $k_{-2}, c^{-1}$                       | $0.12{\pm}0.01$ | $0.23 \pm 0.05$   | $0.38 {\pm} 0.05$ | $0.03 \pm 0.01$ |                   |
| $k_{\text{cat}},  \mathrm{c}^{-1}$     |                 | $0.046 \pm 0.002$ | $0.056{\pm}0.007$ |                 |                   |
| $K_{\rm dis} \times 10^6$ , M          |                 | $0.15 \pm 0.02$   | $0.10{\pm}0.02$   |                 |                   |
|                                        |                 |                   |                   |                 |                   |

Таблица 6. Значения кинетических параметров отдельных стадий механизмов взаимодействия MBD4<sup>cat</sup> с разными субстратами.

 $K_{dis} = k_3 / k_{-3}$ 

Сравнивая значения полученных констант скорости, можно проследить некоторые закономерности. Стадия первичного связывания  $(k_1)$  протекает несколько быстрее для субстрата U/G17. С ним же образуется и наиболее прочный комплекс  $(E \cdot U)_1$ , вероятно, потому что концы семнадцатизвенного дуплекса находятся достаточно далеко от повреждения и не мешают связыванию. При этом, этот субстрат достаточно короткий, из-за чего вероятность связывания MBD4<sup>cal</sup> с повреждением, а значит и дальнейшей реакции, увеличивается.

Таким образом, несмотря на принадлежность ДНК-гликозилаз SMUG1 и MBD4 к разным структурным семействам Udg и HhH, соответственно, и разной организации активных центров, механизмы конформационных перестроек состоят из принципиально одинаковых стадий поиска повреждения и катализа.

# выводы

- Методом «остановленного потока» по регистрации флуоресценции остатков триптофана в белках, 2-аминопурина и FRET-пары FAM/BHQ1 в ДНК установлены кинетические механизмы конформационных переходов в процессе ферментативных реакций с участием урацил-ДНК-гликозилаз человека MBD4 и SMUG1. Показано, что в процессе взаимодействия происходят последовательные конформационные изменения как ферментов, так и ДНК-субстратов, которые приводят к взаимной адаптации структур взаимодействующих молекул и образованию каталитического фермент-субстратного комплекса.
- 2. Экспериментально показано, что замены F98W и H239A существенно снижают каталитическую активность SMUG1. На основании молекулярного моделирования сделан вывод о том, что замена Phe98 на Trp приводит к нарушению стэкинг-взаимодействия с урацилом в активном центре, затрудняя образование каталитической компетентной конформации. Мутация H239A уменьшает положительный заряд на поверхности ДНК-связывающего кармана, что должно ухудшать связывание белка с отрицательно заряженным сахарофосфатным остовом ДНК.
- 3. Показано, что замена SMUG1 R243A увеличивает каталитическую активность фермента, преимущественно, за счет снижения эффективности связывания продукта *N*-гликозилазной реакции. Данные, полученные с помощью моделирования, позволили предположить, что замена R243A приводит к потере некоторых межмолекулярных контактов с ДНК из-за изменения сети водородных связей с основанием, находящимся напротив повреждения.
- Анализ конформационной динамики фермента MBD4 в сочетании с последовательным усложнением строения и длины ДНК-субстратов показали, что длина ДНК-субстрата влияет только на скорость поиска повреждения, но не на скорость дальнейших конформационных перестроек фермент-субстратного комплекса.
- 5. Установлено, что для SMUG1 и MBD4 механизмы конформационных перестроек состоят из принципиально одинаковых стадий поиска повреждения и катализа, несмотря на принадлежность ферментов к

разным структурным семействам и разной организации активных центров.

Основные результаты диссертации изложены в следующих публикациях:

- 1. Яковлев Д. А. и др. Роль аминокислотных остатков Arg243 и His239 в процессе узнавания поврежденного нуклеотида урацил-ДНК-гликозилазой человека SMUG1 //Биохимия. 2020. Т. 85. №. 5. С. 695-705.
- Iakovlev D. A. et al. The role of active-site residues Phe98, HiS239, and Arg243 in DNA binding and in the catalysis of human uracil– DNA glycosylase SMUG1 //Molecules. – 2019. – T. 24. – №. 17. – C. 3133.
- Kuznetsova A. A. et al. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1 //Molecular BioSystems. – 2017. – T. 13. – №. 12. – C. 2638-2649.
- 4. Яковлев Д. А. и др. Поиск поврежденных участков ДНК метил-СрG-связывающим ферментом MBD4 //Acta Naturae (русскоязычная версия). – 2017. – Т. 9. – №. 1 (32).

Яковлев Данила Алексеевич. Конформационная динамика урацил-ДНК-гликозилаз человека SMUG1 и MBD4 в процессе взаимодействия с ДНК. Формат 60×90/16, Усл. печ. л. 1,38 Цифровая печать. Тираж 100 экз. Подписано в печать 19.05.2021. Заказ № 14-1905-1850.

> ИП Бараненко Д. А. ИНН 783801303482 190068, г. Санкт-Петербург, проспект Римского-Корсакова, д. 29, кв. 11

Отпечатано в КЦ «Комендантский» Россия, г. Санкт-Петербург, улица Гаккелевская, 34 тел.: 702-70-70