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1 Introduction

1.1 Scientific actuality of the research

Deep neural network models have recently received tremendous attention from both academy

and industry, and of course, garnered amazing results in a variety of domains ranging from

Computer Vision, Speech Recognition to Natural Language Processing (NLP). They sig-

nificantly lifted the performance of machine learning-based systems to a whole new level,

close to the human-level performance. As a matter of course, the number of deep learning

projects has also increased year by year. The IPavlov project1, based at the Neural Networks

and Deep Learning Lab of Moscow Institute of Physics and Technology (MIPT), is one of

them, aiming at building a set of pre-trained network models, predefined dialogue system

components and pipeline templates. This dissertation is based on the work carried out as a

part of this project, focusing on studying deep neural network models to address Sequence

Labeling and Coreference Resolution tasks.

Sequence Labeling task is a kind of pattern recognition task involving assignment a

categorical label to each element in an observed sequence. This task plays an important

role in the field of Natural Language Processing (NLP) since many NLP tasks are related

to labeling sequence data. Typical tasks include Named Entity Recognition (NER), Part Of

Speech (POS), Speech Recognition, as well as Word Segmentation. Therefore, solving the

Sequence Labeling task has been attracting a lot of attention from NLP researchers.

Coreference Resolution is an NLP task aiming at finding all mentions that refer to the

same entity in a text. This task has an important role in a lot of higher-level NLP tasks

including Question Answering, Text Summarization, and Information Extraction as well.

However, it is one of the hardest tasks since the accurate prediction requires the model to

deeply understand the meaning of the whole input text that could be a couple of sentences or

even a document with hundreds of sentences. Based one that, mentions could be determined

and clustered. This is a grand challenge. So far, not many works have been published and

the achieved results are still not impressive compared with the other NLP tasks. Hence,

there still remains a large potential for better solutions.

1.2 The goal and task of the dissertation

The main goal of this dissertation is to study supervised learning models, focusing on deep

neural network models such as Bidirectional Long Short-Term Memory (Bi-LSTM), Bidirec-

tional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), Attention-

based models, as well as state-of-the-art language models, to address Sequence Labeling and

Coreference Resolution tasks. The major tasks in this PhD work include:
1https://ipavlov.ai/
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• Systematically review publications on application of neural network to sequence la-

beling and coreference resolution tasks with focus on recent supervised deep neural

networks;

• Propose and implement new models for sequence labeling task with focus on extracting

useful features for the word vector representation;

• Propose and implement new models for coreference resolution focusing on dealing with

the long-term dependency problem;

• Apply the proposed models to three specific tasks: Named Entity Recognition, Sen-

tence Boundary Detection, Coreference Resolution task;

• Based on the conducted experiments on given tasks, analyse performance of the pro-

posed models.

1.3 Related works

For Sequence Labeling task, before the advent of Deep Learning, two common approaches

are rule-based and feature-based approaches. Rule-based approach, as its name indicates,

is made up of the hand-crafted rules which are based on syntactic features, grammatical

features, as well as domain-specific gazetteers. In the rule-based models, the rules are man-

ually designed and then directly used for making decisions. The feature-based approach is

an extended variant of the rule-based approach in which the rules are designed to represent

training examples as feature vectors which are vectors of boolean or numeric values. This

step is called feature engineering. The features could be character-level features, word-level

features, or even document features depending on each specific task demands. Once feature

vectors are built, machine learning algorithms such as Hidden Markov Model, Maximum

Entropy, or Conditional Random Field are used to train a model being able to work well on

unseen data. Both rule-based and feature-based approaches have the same disadvantage of

time-consuming and costly rule design process. Thanks to the deep learning approach, this

limitation is resolved. Deep learning-based models trained on large corpora can learn com-

plex features due to non-linear activation functions. Moreover, one important advantage of

deep learning-based models is the powerful ability of end-to-end representation learning that

eliminates the need for hand-crafted rule design and feature engineering as well as simpli-

fies sequence processing pipeline. In general, deep learning-based sequence labeling models

share similar architecture with three components including (1) input encoder, (2) context

encoder, and (3) tag decoder. However, the implementations of these components and the

ways they are combined are very diverse. Table 1 shows some recent sequence labeling mod-

els for NER task and their obtained results on the CoNLL-2003 dataset. Generally, these

2
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Year Author Model F1

2015 Zhiheng Huang et al. Bi-LSTM-CRF + Senna emb. + Gazetteer 90.10

2016 Onur Kuru et al. 5-layer Bi-LSTM on character-level 84.52

2016 Guillaume Lample et al. Char. Bi-LSTM + Word Bi-LSTM 90.94

2016 Zhilin Yang et al.
Char. Bi-GRU + Word Bi-GRU + Gazetteer

91.20
Joint Training (POS, Chunk, NER)

2017 Emma Strubell et al. Iterated Dilated CNN 90.54

2018 Minghao Wu et al.
Char. CNN + Word Bi-LSTM + CRF

91.89
AutoEncoder for hand-crafted feature reconstruction

2018 Peters et al. ELMo 92.22

2018 Devlin et al BERT 92.80

2018 Akbik et al. Flair 93.09

Table 1: NER approaches and obtained results on CoNLL-2003 dataset.

models utilize: (1) pre-trained word embedding models (GloVe, for example) to initialize

word vector representations, (2) recurrent neural networks (Bi-directional Long Short-Term

Memory (Bi-LSTM, Bi-GRU) to extract context information, (3) CNN to generate a word

vector representation from its characters.

For Coreference Resolution task, there are two common approaches including rule-based

approach and deep learning-based approach. The rule-based approach focuses on manually

building a set of rules that aids in finding mentions, searching and eliminating antecedents,

and pairing them as well. Building rules that capture both syntactic and semantic features

often requires a lot of labor and knowledge of language experts. Therefore, implementing

a rule-based model is time-consuming and costly, and in some cases is not feasible. More-

over, such models are hard to adapt to other languages. Fortunately, learning-based models

are able to overcome these long-standing shortcomings due to the ability to automatically

learn rules from training data. Some recent coreference resolution models along with their

obtained performance on the OntoNotes dataset are shown in table 2. These models use

different algorithms to detect and cluster mentions such as Mention-Pair, Mention-Ranking,

Mention-Ranking with global features learned by RNN, Mention-Ranking using end-to-end

deep neural networks.

1.4 Scientific novelty

In this dissertation, we introduce a hybrid model for sequence labeling tasks which is different

from previous approaches in:

• Generating rich semantic and syntactic word embeddings by combining (1) pre-trained

word embedding, (2) character-level word embedding using a deep CNN network, and

3
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Year Author Model F1

2015 Olga Uryupina et al. Mention-Pair model 61.82

2015 Wiseman et al. Mention-Ranking model 63.39

2016 Wiseman et al.
Mention-Ranking model +

64.20
Global Features (learned by RNN)

2017 Kenton Lee et al. End-to-end First-Order model 67.20

2018 Kenton Lee et al.
Higher-Order model with

72.90
Coarse-to-fine antecedent pruning

2019 Fei et al. Deep Reinforcement Learning-based model 73.80

Table 2: Coreference Resolution approaches and obtained results on OntoNotes dataset.

(3) additional features such as POS and Chunk;

• Encoding capitalization features of whole input sequence with Bi-LSTM;

• Improving the word embedding quality by integrating and finetuning context-based

word embedding.

Application of the proposed model on NER task achieves state of the art performance on

Russian and Vietnamese datasets (99.17%, 94.43% on NE3 and VLSP-2016 datasets). SBD

task can be reformulated as a sequence labeling task and well handled by the proposed model

(89.99%, 95.88% F1 on the Cornell Movie-Dialog and DailyDialog datasets). In addition, in

this dissertation, we propose a new approach to coreference resolution task which is different

from previous approaches in:

• Enhancing mention detection by utilizing modern language models;

• Improving mention detection and mention clustering by learning sentence-level coref-

erential relations.

Application of the model with sentence coreference module for Russian language achieve

state of the art of 58.42% average F1 on RuCor dataset.

1.5 Theoretical and practical value of the work in the dissertation

• Proposed sequence labeling models including WCC-NN-CRF and ELMo WCC-NN-

CRF can be applied to several NLP tasks such as Named Entity Recognition, Part of

Speech, Chunking, and Sentence Boundary Detection as well.

• The WCC-NN-CRF and ELMo WCC-NN-CRF models are implemented in the open-

source DeepPavlov framework2. Trained NER models on Vietnamese and English
2https://deeppavlov.ai
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datasets are available to download at https://github.com/deepmipt/DeepPavlov/

tree/master/deeppavlov/configs/ner. These models are already to use or can be

further fine-tuned on specific domains.

• The SBD model trained on conversational datasets can be used in the annotating

phase of a socialbot. The trained SBD model on the DailyDialog dataset can be

found at https://github.com/deepmipt/DeepPavlov/tree/master/deeppavlov/

configs/sentence_segmentation. This trained model was integrated into our so-

cialbot which was built to participate in the Alexa Prize - Socialbot Grand Challenge

3.

• The Sentence-level Coreferential Relation-based model can be used to extract the sen-

tence relationship in a document-level context and has a promising potential not only

for coreference resolution task but also for question answering, relation extraction or

any other task that needs the information about the relationship between sentences.

1.6 Statements to be defended

• WCC-NN-CRF model for sequence labeling task which utilizes (1) a CNN to generate

vector representation of words from their characters and (2) a Bi-LSTM to encode

the capitalization features of an input sequence. This model achieved state of the art

performance on Vietnamese and Russian datasets with 98.21%, 94.43% on NE3 and

VLSP-2016;

• Extensions of WCC-NN-CRF with a context-based word vector representation gener-

ated by modern language models. This model obtained cutting edge performance on

Russian and English datasets with 99.17%, 92.91%, and 92.27% F1 on NE3, Gareev’s,

and CoNLL-2003 datasets;

• Sentence Boundary Detection task can be reformulated as a sequence labeling task

and addressed by proposed sequence labeling models with impressive results of 89.99%,

95.88% on the Cornell Movie-Dialog and DailyDialog datasets;

• Sentence-level Coreferential Relation-based (SCRb) model to extract the sentence re-

lationship in the coreference context;

• Coreference resolution models extended with SCRb obtained state of the art of 58.42%

average F1 on RuCor dataset;
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1.7 Presentations and validation of the research results

The main findings and contributions of the dissertation were presented and discussed at four

conferences:

• Artificial Intelligence and Natural Language Conference, ITMO University, Saint Pe-

tersburg, Russia, September 20-23, 2017.

• The 2nd Asia Conference on Machine Learning and Computing, Ton Duc Thang Uni-

versity, Ho Chi Minh, Viet Nam, December 7 - 9, 2018.

• The 25th International Conference on Computational Linguistics and Intellectual Tech-

nologies, Russian State University for Humanities, Moscow, Russian, May 29 - June

01, 2019.

• The 4th International Conference on Machine Learning and Soft Computing, Mercure,

Haiphong, Vietnam, January 17-19, 2020.

1.8 Publications

The proposed models applied to NER, SBD, and Coreference Resolution tasks along with

the achieved results were published in five papers, out of which the first four papers were

already indexed by SCOPUS:

1. Le T.A., Arkhipov M. Y., Burtsev M. S., “Application of a Hybrid Bi- LSTM- CRF

Model to the Task of Russian Named Entity Recognition”. In: Filchenkov A., Pivo-

varova L., Zizka J. (eds) Artificial Intelligence and Natural Language. AINL 2017.

Communications in Computer and Information Science, pp. 91–103. 2017. Url:

https://link.springer.com/chapter/10.1007/978-3-319-71746-3_8

2. Le T. A. and Burtsev M. S., “A Deep Neural Network Model for the Task of Named

Entity Recognition”. In: International Journal of Machine Learning and Computing.

Vol. 9. 1., pp. 8–13. 2019. Url: http://www.ijmlc.org/vol9/758-ML0025.pdf

3. Le T. A., Kuratov Y. M. , Petrov M. A., Burtsev M. S., “Sentence Level Representation

and Language Models in the task of Coreference Resolution for Russian”. In: 25th

International Conference on Computational Linguistics and Intellectual Technologies.

2019. Url: http://www.dialog-21.ru/media/4609/letaplusetal-160.pdf

4. Le T. A., “Sequence Labeling Approach to the Task of Sentence Boundary Detection”.

In: Proceedings of the 4th International Conference on Machine Learning and Soft

Computing. New York, NY, USA: Association for Computing Machinery, pp. 144–148.

2020. Url: https://dl.acm.org/doi/10.1145/3380688.3380703
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5. Yuri Kuratov, Idris Yusupov, Dilyara Baymurzina, Denis Kuznetsov, Daniil Cher-

niavskii, Alexander Dmitrievskiy, Elena Ermakova, Fedor Ignatov, Dmitry Karpov,

Daniel Kornev, The Anh Le, Pavel Pugin, Mikhail Burtsev, "DREAM techni-

cal report for the Alexa Prize 2019". In: The 3rd Proceedings of Alexa Prize.

2020. Url: https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/

alexaprize/assets/challenge3/proceedings/Moscow-DREAM.pdf

Personal contribution of the author in the works with co-authors is as follows:

1. Development and implementation of a hybrid Bi-LSTM CRF model for solving the

task of Named Entity Recognition in Russian.

2. Development and implementation of a character-aware WCC-NN-CRF model and its

application to the task of Named Entity Recognition for four languages: Vietnamese,

Russian, English, and Chinese.

3. Development and implementation of the Sentence-level Coreferential Relation-based

(SCRb) model for determining the relationship of sentences in the context of corefer-

ence; integration of the SCRb model into the baseline coreference model for solving

the task of Coreference Resolution for Russian language.

5. Implementation and integration of the ELMo WCC-NN-CRF model for NER and SBD

tasks in the socialbot architecture.

2 The content of the dissertation

The full dissertation is presented in 141 pages and organized into five chapters:

• Chapter 1 is an introductory chapter that firstly gives a brief overview of Deep Learn-

ing and Natural Language Processing, and then briefly summaries the dissertation

structure and contributions;

• Chapter 2 focuses on representing some major concepts of Deep Learning knowledge

that are closely related to the proposed models described in the next two sections. The

first one is the word embedding models that are responsible for converting raw words

into vectors which can be processed by neural networks. The second concept is about

deep neural network models which are mostly used for NLP tasks. The last one is

general-purpose language models that aim at building language models which can be

applied to most of NLP task to boost the model performance. Applying these models

is easy and requires a little effort;

• Chapter 3 describes proposed models for the task of Sequence Labeling, and conducted

experiments on NER and SBD tasks;
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• Chapter 4 introduces a new approach to the task of Coreference Resolution, which aims

at building a model to extract the sentence-level coreferential relationship. This model

can be used in two ways: (1) output of this model is used as an additional feature for

the baseline model, (2) this model is jointly trained with the baseline model;

• Chapter 5 summarizes the completed works, achieved results, and conclusions as well.

Below, only two main chapters, the third and fourth chapters, are presented.

2.1 Sequence labeling with character-aware deep neural networks
and language models

The goal of the Sequence Labeling task is to determine an appropriate state for each obser-

vation. From the supervised machine learning perspective, the Sequence Labeling task can

be formally defined as follow. Given the training data:

{(x(1), y(1)), . . . , (x(m), y(m))},

where:

x(i) = x1 . . . xn, xj ∈ X,

y(i) = y1 . . . yn, yj ∈ Y,

here X and Y denote the sets of all possible observations and states. The task, here, is to

build a predictor by learning a map function f : x → y that works well on unseen input

sequence x.

2.1.1 Backbone WCC-NN-CRF Architecture

The family of models proposed and studied in this dissertation has the same core backbone

architecture. This architecture follows a hybrid approach and consists of three encoding

sub-networks to (1) encode the semantic and grammatical features of words, (2) capture

character-level word representation as well as capitalization features of words, and (3) capture

the meaning of words in their contexts. In addition, a CRF layer is utilized to exploit the

output tag dependencies. A graphical illustration of the proposed model is shown in Fig. 1.

We refer to this backbone model as WCC-NN-CRF in the text.

Let Vword, Vchar, Vcap be word, character, and capitalization type vocabularies, respec-

tively; here |V | denotes the size of the vocabulary V . In the proposed model, three kinds of

lookup tables are used to map words, characters, and capitalization types of words to dense

vectors. Let denote them as Lword ∈ R|Vword|×dword , Lchar ∈ R|Vchar|×dchar , Lcap ∈ R|Vcap|×dcap .
Here dword, dchar, and dcap are the lengths of dense vectors representing words, character, and

capitalization type of word, respectively. Lword is initialized by a pre-trained word embed-

ding (Glove, for example). Lchar and Lcap are initialized randomly with values drawn from
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Input Sentence

Character Embeddings Word Embeddings Capitalization Embeddings

Convolutional Neural
Network Bi-LSTM Network

Concatenate

Bi-LSTM Network

Feed-Forward Network

Tag Sequence

CRF

Figure 1: Proposed WCC-NN-CRF model for Sequence Labeling task.

a uniform distribution with range [-0.5, 0.5]. All of these lookup tables are then fine-tuned

during training state.

Given an input sentence with n words x = {x1, .., xn}, it is is transformed into the word,

character, and capitalization index forms: xword ∈ Rn,xchar ∈ Rn×nbchar , xcap ∈ Rn. Here,

nbchar denotes the number of characters in a word. The padding technique is used to ensure

that all words have the same number of characters. After that, word, capitalization and

character embeddings eword ∈ Rn×dword , ecap ∈ Rn×dcap , echar ∈ Rn×nbchar×dchar are created by

looking up xword, xcap, xchar in Lword, Lcap, and Lchar, respectively.

The mapping from character and capitalization embeddings to word embeddings are

detailed below.

Character feature extraction with CNN. Recall that echar ∈ Rn×nbchar×dchar are vector

embeddings representing characters of the input sentence. These vectors are fed into three

convolutional layers with different window sizes [1, 3], [1, 4], and [1, 5]. Let denote them

as: f1 ∈ R3×dchar×dconv1 , f2 ∈ R4×dchar×dconv2 , f3 ∈ R5×dchar×dconv3 . Let O1 ∈ Rn×nbchar×dconv1 ,

O2 ∈ Rn×nbchar×dconv2 , and O3 ∈ Rn×nbchar×dconv3 denote the outputs of these convolutional

layers. Each position (i, j) on the tth slice of these outputs are computed using the equation

1. The proposed model uses (1, 1) slide along with padding technique to ensure that the

outputs of convolutional layers have the same shape with the inputs. In other words, the

number of words and number of characters remain unchanged after applying convolutional

9



layers.

O[i, j, t] =

dchar−1∑
k=0

rright∑
r=rleft

e[i, j + r, k]× f [r + bfw/2c, k, t] + b[k, t], (1)

where:

rleft = −bfw/2c, (2)

rright = bfw/2c − (fw − 1) mod 2, (3)

here b c and mod denote floor division and modulo operations, respectively. b, fw denote

biases and the filter width, respectively.

O1,O2,O3 are then concatenated along the features dimension to create the feature

tensor O ∈ Rn×nbchar×dsum . Finally, the character-based word representations are computed

by reducing the character dimension:

O = [O1,O2,O3], (4)

echarword = max_pooling(O), (5)

here [ ] denote the concatenation operation.

Fig. 2 shows the complete illustration of the CNN network for character feature extrac-

tion.

Capitalization feature extraction with Bi-LSTM. A Bi-LSTM network is used to

capture the capitalization feature of words in their left and right contexts (See Fig. 3).

Input sentences are transformed into the capitalization form that encodes each word with

one integer value representing the capitalization of that word. For example, the sentence:

“MIPT is located in Dolgoprudny.” will be encoded to “0 1 1 1 2”. Here 0 value denotes

the word with all characters uppercase, values of 1 mean that all characters of the word

are in lowercase, and value of 2 is used for the words starting with a capitalized character.

In our implementation, we use four capitalization types including: upper_case, lower_case,

fist_cap, and otherwise.

Recall from the beginning of section 2.1.1 that ecap ∈ Rn×dchar are capitalization vector

representations of the input sentence. These vectors are fed into two Bi-LSTM networks

to capture the sentence-level context of words and produce the capitalization-based vector

representation of words:

ecapword = [
−−→
LSTM(ecap),

←−−
LSTM(ecap)], (6)

here −−→LSTM(ecap),
←−−
LSTM(ecap) denote the outputs from the forward and backward LSTM layers,

respectively; [ ] is the concatenation operation.
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Figure 2: Character features extraction with CNN.
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Figure 3: Extraction Capitalization Feature Extraction using Bi-LSTM Network.

Once three kinds of word vector representations eword, echarword, e
cap
word are computed, the word

vector representation is just their concatenation:

e = [eword, e
char
word, e

cap
word]. (7)

e is then fed into another Bi-LSTM network to produce the final word representation in

the sentence context:

rword = [
−−→
LSTM(e),

←−−
LSTM(e)]. (8)

Let nbtags be a number of tags predefined for the given task. A feed-forward neu-

ral network is used to produce scores of words in the input sentence according to tags

Sffnn[n, nbtags]. Here Sffnn[i, j] represents the score of jth tag for the ith word.

Tag dependencies extraction with CRF. The word representation is a concatenation of

a pre-trained word embedding, character-level word embedding produced by CNN network,

and capitalization embedding generated by the Bi-LSTM network. This word representation

is then fed into the second Bi-LSTM network to produce the final word representation in

the left and right contexts. From now on, we have two ways to produce the final tag

sequence. The first way is to directly feed the final word representation into a softmax layer

to compute probabilities of tags. In this case, predicting the output tag just depends on the

input sequence, but not on the previously assigned tags. The second way is to use CRF or

12



another recurrent neural network to make tagging decisions based on the previous and next

output tags. From our experiments, CRF for extracting tag dependencies performs better

than a recurrent neural network.

In addition to the Sffnn, the CRF model uses another type of score called transition

score T that represents how likely one tag follows another. The score for the pair of the

input sentence x and a tagging sequence y = {y1, .., yn} is calculated by equation below:

Scrf (x,y) = T[y0,y1] +
n∑
i=1

(Sffnn[i,yi] +T[yi,yi+1]), (9)

where y0, yn+1 are dummy tags added to represent the beginning and the end of the tag

sequence. Hence, the transition matrix has shape of [nbtags + 2, nbtags + 2]. This transition

matrix is fine tuned during a training stage.

After that, the softmax function is applied to estimate conditional probabilities of the

tag sequence:

p(y|x) = eScrf (x,y)∑
ŷ∈Yx

eScrf (x,ŷ)
, (10)

here Yx denotes the set of all possible output tag sequences.

During the training stage, the log-probability of the correct tag sequence is maximized.

At the inference stage, the output tag sequence is the sequence that maximizes the score

given by:

y∗ = argmaxŷ∈YxScrf (x, ŷ). (11)

2.1.2 Language model-based architecture

To further improve the system’s performance, state-of-the-art language models such as

BERT, ELMo are leveraged to enhance the quality of input word vector representations.

These language models can be integrated into the model from Section 2.1.1 in two ways: (1)

word vector representations are extracted from the language model and used as an additional

input features, (2) language model is directly integrated into the architecture and fine-tuned

during the training stage. According to our conducted experiments, treating the language

model as a part of the overall architecture to fine-tune it during training for the NER task

is better than just using it as an additional feature. This section presents two language

model-based architectures for the NER task: (1) WCC-NN-CRF + ELMo to address the

monolingual NER task, and (2) WCC-NN-CRF + BERT to deal with the multilingual task.

WCC-NN-CRF with ELMo. This model is an extension of the model described in the

section 2.1.1, in which two word embedding types are used: (1) free-context word embedding

like Glove, and (2) context-based word embedding like ELMo.
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WCC-NN-CRF with BERT-based Multilingual Model. This section describes an-

other proposed model for multilingual tasks. The model is a combination of the WCC-

NN-CRF model described in section 2.1.1 with BERT. A BERT model3 pre-trained on a

large text corpus covered more than 100 languages is fine-tuned to produce word vector

representations specific for the NER task. Besides that, a character CNN network is still

used to generate word vector representations from their characters to better represent out-

of-vocabulary words. The final word vector representations are the combination of BERT

output and character-level word vectors. A Bi-LSTM network is then utilized to produce

the word vectors in the sentence context. Finally, a feed-forward network followed by a CRF

layer is used to estimate probabilities of the tags.

2.1.3 Application of WCC-NN-CRF models for Named Entity Recognition

NER is a subtask of information extraction that locate and classify named entities mentioned

in unstructured text into pre-defined categories such as person names, organizations, loca-

tions. NER is often one of the first steps in an NLP pipeline, and plays an important role in

many NLP tasks, including but not limited to Question Answering, Coreference Resolution,

Topic Modeling, and Text Summarization.

In this section, we present the experiments of our WCC-NN-CRF models on NER task.

To have a comprehensive analysis of WCC-NN-CRF models, six datasets were selected.

These datasets cover four languages including Vietnamese, Russian, English, and Chinese:

CoNLL-2003, VLSP-2016, NE3, NE5, Gareev’s, and MSRA.

Table 3 shows the tagging performance of WCC-NN-CRF model on six datasets. We

also compare WCC-NN-CRF model with recent Vietnamese models in table 4. Figure 4

visualizes the effectiveness of each component in WCC-NN-CRF model over three given

datasets. According to the experiment results, character features extracted by the CNN

network plays an important role in enhancing the model performance: about 12%, 5%, and

15% for VLSP-2016, CoNLL-2003, and Gareev’s datasets, respectively. Adding a Bi-LSTM

network to extract the capitalization features of words yielded further improvement, about

3%. It is interesting to find out from these experiments that using POS and Chunk features

helps to significantly boost the model performance, about 5%, when testing on the VLSP-

2016 dataset, whereas the improvement is almost negligible on CoNLL-2003 dataset. This

partially shows that the syntactic features in the Vietnamese language play a more important

role than in English in the context of the NER task.

The evaluation of ELMo WCC-NN-CRF model on CoNLL-2003, NE3, and Gareev’s

datasets compared with some English and Russian NER models is shown in tables 5, 6.

Tagging performance of Multilingual BERT-based WCC-NN-CRF model in comparison with
3https://github.com/google-research/bert
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Language Dataset P R F1

Russian

Gareev’s 87.07 90.40 88.69

NE3 98.09 98.34 98.21

NE5 94.33 95.29 94.81

English CoNLL-2003 ∗ 90.91 91.52 91.22

Vietnamese VLSP-2016 ∗ 94.91 93.96 94.43

Chinese MSRA 91.99 93.92 92.95

Table 3: Tagging performance of WCC-NN-CRF. ∗ denotes using POS and Chunk features.

Model P R F1

Le et al. (2016) 89.56 89.75 89.66

Pham et al. (2017) 91.09 93.03 92.05

Pham et al. (2017) 92.76 93.07 92.91

Nguyen et al. (2018) 93.87 93.99 93.93

WCC-NN-CRF 94.91 93.96 94.43

Table 4: Tagging performance of WCC-NN-CRF on VLSP-2016 dataset compared with some

Vietnamese models.

WCC-NN-CRF and ELMo WCC-NN-CRF is shown in table 7.

2.1.4 Application of WCC-NN-CRF models for Sentence Boundary Detection

Sentence Boundary Detection (SBD) is an NLP problem of deciding where sentences begin

and end in an unpunctuated text. This task has an important role in voice-enable chatbot

since some automatic speech recognition devices just output unpunctuated text while many

NLP tasks work at sentence-level. We firstly reformulate SBD as a sequence labeling task

and then apply our ELMo WCC-NN-CRF model.

Let x be the unpunctuated text consisting of n tokens outputted by an automatic speech

recognition device:

x = {x1, x2, .., xn}. (12)

Let t be the list of k predefined punctuation mark types:

t = {t1, t2, .., tk}, (13)

corresponding to the k types of sentences. The goal of SBD task is to split x intom sentences

s, by adding punctuation marks:

s = {s1, s2, .., sm}, (14)
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Figure 4: Importance of different components for performance of backbone WCC-NN-CRF

model across the datasets.

Model P R F1

Huang et al. (2015) - - 90.10

Strubell et al. (2017) - - 90.54

Xu et al. (2017) 92.13 89.61 90.85

Passos et al. (2014) - - 90.90

Lample et al. (2016) - - 90.94

Luo et al. (2015) 91.50 91.40 91.20

Ma et al. (2016) - - 91.21

Wang et al. (2017) 91.39 91.09 91.24

Devlin et al. (2018) - - 92.80

Akbik et al. (2018) - - 93.09

ELMo WCC-NN-CRF (ours) 92.04 92.50 92.27

Table 5: Tagging performance of ELMo WCC-NN-CRF on CoNLL-2003 dataset compared

with some state-of-the-art models.
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Model
Gareev’s NE3

PER ORG OVERALL PER ORG LOC OVERALL

Gareev et al.

(Knowledge-based model) 79.30 55.48 62.17 - - - -

Gareev et al.

(CRF-based model) 84.84 71.31 75.05 - - - -

Malykh et al.

(Character-based LSTM) 92.89 69.14 62.49 - - - -

Mozharova et al.

(CRF-based model) - - - 96.08 83.84 94.57 91.71

Mozharova et al.

(Feature-based model) - - - 97.21 95.21 85.60 92.92

Romanov et al.

(FastText-CNN-CRF) - - - - - - 95.00

Romanov et al.

(BERT-based model) - - - - - - 96.00

Our model

(WCC-NN-CRF) 96.08 85.48 88.76 99.02 97.49 97.87 98.21

Our model

(ELMo WCC-NN-CRF) 98.70 90.32 92.91 99.90 99.05 99.30 99.17

Table 6: F1-score of ELMo WCC-NN-CRF model on Russian datasets compared with some

published models.

Model

VLSP-2016 CoNLL-2003 NE3

(Vietnamese) (English) (Russian)

P R F1 P R F1 P R F1

WCC-NN-CRF 90.61 87.25 88.90 90.44 90.76 90.60 98.08 98.34 98.21

ELMo WCC-NN-CRF - - - 92.04 92.50 92.27 99.05 99.30 99.17

BERT-Multi WCC-NN-CRF 91.24 90.34 90.79 89.27 91.91 90.47 99.05 99.24 99.15

Table 7: Tagging performance of Multilingual BERT-based WCC-NN-CRF model on VLSP-

2016, CoNLL-2003, and NE3.
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where:

si = {xa, xa+1, .., xb, tsi}, (15)
m∑
i=1

|si| = n+m, (16)

here si is a segment of x after adding the corresponding punctuation mark tsi , and si is

consecutive with the previous one in the order in x. |sj| denote the length of the punctuated

sentence sj.

We transform s into the sequence y:

y = {y1, y2, .., yn}, (17)

which has the same length with the input sequence x, by traveling through each sentence in

s, each word per time, to create the corresponding tag by following below rules:

• If the current word is the first word of the sentence then replace it with the tag, tsi ,

corresponding to the last word in the sentence.

• Remove the last word of the sentence.

• Replace the remaining words with tag O marking that these words are not the first

one.

• Finally, concatenate all modified sentences to create the tag sequence.

We use the first word in the sentence to mark the sentence boundary instead of the last one

since the first word (e.g., who, what, when, how, do, am) often contains more information

for determining the type of sentence.

The task now can be reformulated. Given an unpunctuated lowercase text x consisting

of n tokens:

x = {x1, x2, .., xn}, (18)

the model need to predict the sequence of tags:

y = {y1, y2, .., yn}, (19)

where yi ∈ t.
Now modification of backbone WCC-NN-CRF model can be used to address the SBD

task. We experimented on two datasets generated from two conversational datasets, Cornel

Movie-Dialog and DailyDialog, and achieved 89.99% and 95.88%, respectively (See table 8).
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Dataset Tag P R F1

Cornell Movie-Dialog

Question 87.99 76.11 81.62

Statement 91.27 92.54 91.90

Overall 90.70 89.30 89.99

DailyDialog

Question 95.54 93.79 94.66

Statement 96.14 96.43 96.29

Overall 95.99 95.77 95.88

Table 8: Tagging performance of ELMo WCC-NN-CRF on Cornell Movie-Dialog and Dai-

lyDialog datasets.

2.2 Coreference resolution with Sentence-level Coreferential Scor-
ing

Coreference Resolution (CR) is the task of identifying and clustering all expressions that

refer to the same entity in a text. Let take two sentences below as an example:

My sister has a friend called John . She thinks he is so funny.

There are two people mentioned in these sentences: My sister and John. A CR model

needs to find and cluster all mentions referring to these people. Hence, the output should be

{My sister, She}, {John, he}. CR is very useful for information extraction, text summa-

rization, as well as question answering systems. For example, CR plays an important role in

question answering systems as it can be used to retrieve the named entities that pronouns

refer to (i.e., CR enables question answering systems to answer the question: “What are we

talking about?”).

2.2.1 Sentence-level Coreferential Relation-based model

We propose Sentence-level Coreferential Relation-based (SCRb) model to learn the sentence

relationship in the coreference context. More concretely, SCRb model takes as input a list

of sentences and outputs: sentence representation SCRbsr and sentence-level coreferential

relation score SCRbss that expresses the probability of existence of coreference links between

two sentences (See Fig. 5).

SCRb model use three types of word embeddings including (1) a free-context embedding

efc, (2) a context-based embedding ecb, and (3) a character-based embedding ech learned by

a CNN network. All of these vectors are concatenated to generate the final word embedding:

ew = [efc, ecb, ech], (20)

here [,] denotes the concatenation operator.
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SCRb model

Are you waiting for John? He arrived yesterday. Oh, I've just seen him in the restaurant.I am waiting for my son.
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vector representation of sentence 1
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Figure 5: Sentence-level Coreferential Relation-based model

The resulting word embeddings of each sentence are then feed into a Bi-LSTM network

to capture both left and right sentence contexts:

w = [
−−→
LSTM(ew),

←−−
LSTM(ew)] (21)

here −−→LSTM(ew),
←−−
LSTM(ew) denote outputs of forward and backward LSTM networks, respec-

tively.

A max pooling or attention mechanism is utilized to reduce the word dimension to gen-

erate the sentence representation:

s = max_pooling(w), (22)

The second Bi-LSTM is then used to capture the final sentence representation in the

document context:

SCRbsr = [
−−→
LSTM(s),

←−−
LSTM(s)]. (23)

To generate coreferential relations between sentences, we modified Multi-dimensional

Self-attention proposed by Tao Shen et al. in 2018 by adding distance encoding between

sentences. Let SCRbsr(i) ∈ Rds be the vector representing the ith sentence in the document,

here ds denotes the length of sentence vectors generated by the last Bi-LSTM network. Let

edij ∈ Rdd is distance embedding between sentence i and sentence j, here dd denotes the

length of position encoding vectors. Let W ∈ Rds , W1,W2 ∈ Rds×ds ,Wd ∈ Rds×dd are weight

matrices, and b1 ∈ Rds , b ∈ R are bias terms. The setence-level coreferential relation score

between sentence i and sentence j is computed via a feed-forward neural network:

SCRbss(i, j) = W Tσ(W1SCRbsr(i) +W2SCRbsr(j) +Wdedij + b1) + b, (24)

where σ is the activation function.

The graphical illustration of SCRb model is shown in figure 6.
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You do not understand me,  Siri said. ...

...

...

free-context pre-trained word embedding:
context-based pre-trained word embedding:
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character-based word  embedding:

: distance emb. between sentences i and j

: representations of sentence i and j

Figure 6: Sentence-level Coreferential Relation-based model

2.2.2 Proposed Coreference Resolution models

Baseline model. Among some recent CR models, we choose Kenton Lee’s model as a

baseline model because of its state of the art performance and code availability. In our work,

we extend the baseline model and focus on building an end-to-end model for the Russian

language.

The baseline model considers CR task as a set of decisions for every possible span in the

document. Let D be a document of T words, N = T (T+1)
2

be the number of possible spans

in D. The span i is determined by its start and end indices START(i) and END(i). The task is

to assign each span i with an antecedent yi. Here, yi ∈ Y = {ε, 1, . . . , i− 1}. ε is a dummy

antecedent representing two possible scenarios: (1) the span is not a mention or (2) the span

is a mention that is not coreferent with any previous span. The goal of the model is to learn

a conditional probability distribution:

P (y1, . . . , yN |D) =
N∏
i=1

P (yi|D) =
N∏
i=1

exp(s(i, yi))∑
y′∈Y exp(s(i, y

′))
, (25)

where s(i, j) is the coreferential score between span i and span j. Bellow, we step by step

describe how the coreferential score is computed:

• Word vector representations, {x1, . . . ,xT}, are concatenation of pre-trained word em-
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beddings and character-based word embeddings generated by 1-dimensional CNN net-

works.

• Compute contextualized word vector representation by using Bi-LSTM network:

x∗t = [
−−→
LSTMt(x),

←−−
LSTMt(x)]. (26)

• Compute vector representation of span i:

gi = [x∗START(i),x
∗
END(i), x̂i, φ(i)], (27)

here φ(i) is the vector encoding the size of span i, x̂i is the weighted sum of word

vectors in span i, computed by using an attention mechanism over words of span i:

αt = wα · FFNNα(x
∗
t ), (28)

αi,t =
exp(αt)∑END(i)

k=START(i) exp(αk)
, (29)

x̂i =

END(i)∑
k=START(i)

αi,t · xt, (30)

here FFNN denotes a feed-forward neural network.

• Use feed-forward neural networks to compute mention score, and antecedent score:

sm(i) = wm · FFNNm(gi), (31)

sa(i, j) = wa · FFNNa([gi, gj, gi ◦ gj, φ(i, j)]), (32)

where · indicates the dot product, ◦ denotes element-wise multiplication, and φ(i, j) is

the feature vector encoding speaker and genre information from the metadata and the

distance between two spans.

• Compute coreference score:

s(i, j) =

{
0 j = ε

sm(i) + sm(j) + sa(i, j) j 6= ε
(33)

The main drawback of this model lies in the pairwise scoring function s(i, j) which just

makes local decisions by considering only pairs of spans. To enhance this function, an

iterative inference method was proposed to refine span representations. This entails refining

the antecedent distributions:

Pn(yi) =
exp(s(gni ,gnyi))∑

y∈Y(i) exp(s(g
n
i ,g

n
y ))

. (34)
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g1
i is computed as described before. At the tth iteration, the attention mechanism is utilized

to compute the expected antecedent representation ati, and then the span representation is

updated:

ati =
∑

yi∈Y(i)

Pt(yi) · gtyi , (35)

f ti = σ(Wf [g
t
i, a

t
i]), (36)

gt+1
i = f ti ◦ gti + (1− f ti ) ◦ ati. (37)

Baseline + SCRb model. SCRb model can be combined with the baseline model in two

ways:

• Directly integrated SCRb model into the baseline model. Both models are jointly

trained together;

• Use the output of SCRb model as an additional feature for the baseline model.

Figure 7 shows the way we combine the baseline model with SCRb model. The sentence

representation and sentence-level coreferential relation score, SCRbsr, SCRbss outputted

from SCRb model are used to improve the mention scoring and coreference scoring functions.

Specifically, we modify the mention score function and coreference score function by adding

SCRbsr and SCRbss:

sm(i) = wm · FFNNm([gi, SCRbsr(i)]), (38)

s(i, j) = α× (sm(i) + sm(j) + sa(i, j)) + β × SCRbss(i, j), (39)

here α, β are model hyperparameters.

Baseline + BERT model. BERT-base model has a total of 12 layers. We conducted

experiments with outputs of different layers to study manually how BERT pays attention at

each layer in the coreference context. Based on this analysis, we decided to take for our model

outputs from three layers 1, 6, and 12 with more coreference relevant attention patterns. The

word contextualized vector representations are the weighted sum of these outputs. The final

word embedding is the concatenation of two types of embeddings: (1) free-context word

embeddings (Glove + Character-based word embedding), and (2) the context-based word

embedding generated from BERT-base model.

2.2.3 Experiments and results

Three datasets are used to evaluate two above proposed models:

• OntoNotes - an English dataset used for CoNLL-2012 shared task,

• RuCor - a Russian dataset used for Dialogue-2014 shared task,
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(John visited) (visited his grand) (grand mother yesterday)

(grand mother yesterday, John visited)

Word and character
embedding

Bi-LSTM

Span representation

Span head

Mention score

Antecedent score

(grand mother yesterday, John visited)

(grand mother yesterday, visited his grand)

Coreference score
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) = 0

: span size encoding
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(ours)
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Figure 7: Baseline + SCRb model for Coreference Resolution task. Only a subset of possible

spans is depicted.

Dataset
Max. F1 (%)

on the dev. set

Original OntoNotes 5.0 72.90

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 80.0% 74.13

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 84.0% 74.73

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 91.0% 75.56

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 94.0% 76.36

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 96.5% 77.01

OntoNotes 5.0 + sent.-level coref. relationship with the acc. of 98.5% 77.92

OntoNotes 5.0 + ground truth sent.-level coref. relationship 78.84

Table 9: Effect of sentence-level coreferential relations on the baseline SCRb model perfor-

mance.
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• AnCor - a Russian dataset used for Dialogue-2019 shared task.

The first experiment aims at studying the significance of the sentence-level coreferential

relations. We analyse how the information about sentence-level coreferential relation affects

the baseline model performance. To do this, we train one model with exactly the same

parameters on two datasets: (1) the original OntoNotes 5.0 dataset, (2) the same dataset

but augmented with ground truth sentence-level coreferential relations. Different amount of

noise were added in different training sessions to get better understanding of the importance

of the sentence-level information. As a result we got the model’s performance for a different

values of accuracy of sentence relation presence. The results presented in the table 9 show

that the information about the sentence relations is a very useful feature for the CR task.

Specifically, if this feature is provided with an accuracy of 91%, the model performance will be

increased by about 2.5%, a promising percentage. Under the ideal condition, when training

with ground truth sentence-level coreferential relations, the model performance reached to

78.84%, an improvement by 5.84% compared with the performance of the baseline model

trained with the original OntoNotes 5.0 dataset.

In the second experiment, we implement seven modifications of the SCRb model and test

their performance on the OntoNotes 5.0 dataset:

• SCRb M1: The baseline model that is the combination of GloVe embedding, Bi-LSTM,

CNN, and Self-attention.

• SCRb M2: M1 + log scale distance embedding inside self-attention.

• SCRb M3: M2 + weighted losses to deal with the unbalanced data problem.

• SCRb M4: M4 + ELMo embedding.

• SCRb M5: M3 + BERT embedding.

• SCRb M6: This is a modification of M5 by outputting non-symmetric outputs.

• SCRb M7: M5 - GloVe embedding.

The detail results of these variants on the validation set and test set are shown in Fig. 8.

Table 10 shows the evaluation of Baseline + SCRb model on OntoNotes dataset compared

with some recent coreference resolution models. Testing results of our proposed model on

two Russian datasets in comparison with the other Russian models are shown in table 11.
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Model Avg. F1

Martschat et al. (2015) 62.5

Clark et al. (2015) 63.0

Wiseman et al. (2015) 63.4

Wiseman et al. (2016) 64.2

Clark et al. (2016) 65.3

Clark et al. (2016) 65.7

Lee et al. (2017) 67.2

Lee et al. (2018) 72.9

Fei et al. (2019) 73.8

Baseline + SCRb M7 74.1

Table 10: Testing results on OntoNotes dataset.

Figure 8: SCRb model’s variants performance. M1: Baseline model (Bi-LSTM + CNN +

Self attention). M2: M1+ log scale distance inside self attention. M3: M2 + weighted class

(to deal with imbalanced data problem). M4: M3 + ELMo. M5: M4 + BERT. M6: M5 +

BERT with nonsymmetric output. M7: M5 - GloVe.
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Dataset Model Avg. F1

Rucor

Sysoev (2017) 35.09

Baseline + ELMo∗ 57.58

Baseline + SCRb 58.42

AnCor

Baseline + ELMo∗ 51.72

Baseline + SCRb 53.61

Baseline + BERT∗ 53.76

Baseline + ELMo∗ + RuCor 55.96

Baseline + BERT∗ + RuCor 57.78

Table 11: Testing results on RuCor and AnCor dataset. ∗ denotes pre-trained models on

DeepPavlov framework that are fine-tuned on Russian corpora.

3 Conclusions

In conclusion, the dissertation proposed deep learning-based models to address sequence

labeling and coreference resolution tasks. Some conclusions drawn from the dissertation are

listed below:

1. Current state-of-the-art approach to sequence labeling tasks is the hybrid approach

that combines deep neural networks with traditional structured prediction models.

2. Word vector representation generated from the characters is a crucial feature, especially

in case of small training data or the large number of out-of-vocabulary words.

3. POS and Chunk features play an important role for the NER task.

4. Fine-tuning modern language models helps to (1) improve model performance, (2)

handle scarce data problem, and (3) make the model more robust and generalize.

5. Building multilingual models based on BERT is good choice for low-resource language

or specific domains.

6. SBD task can be reformulated as Sequence Labeling task and well handled by ELMo

WCC-NN-CRF model.

7. Sentence-level coreferential relation is a very useful feature for the coreference resolution

task.

8. Position feature encoding the distance between sentences, weighted class, and modern

language models are the key components in building the SCRb model that boost the

model accuracy from 77% up to 84%.
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9. Using modern language models such as ELMo or BERT significantly boosts the model

performance and reducing the training time as well, outperform the previous models.

The main contributions of the dissertation are summarized below:

1. An original hybrid model for sequence labeling task which extends existed Bi-LSTM

CRF architectures with (1) trainable CNN for generation of character-level represen-

tation of an input sequence, and (2) Bi-LSTM for encoding capitalization features;

achieves SOTA performance on Russian and Vietnamese datasets with F1 98.21%,

94.43% on NE3 and VLSP-2016.

2. Extensions of the original architecture with encoders based on language models ELMo

and BERT were evaluated on Russian and English datasets. It obtained state of the

art performance of 92.91%, 99.17%, 92.27% F1 on Gareev’s dataset, NE3, and CoNLL-

2003.

3. Application of proposed sequence labeling model to the sentence boundary detection

task produced solid results of 89.99% F1 and 95.88% F1 on the Cornell Movie-Dialog

and DailyDialog datasets.

4. Sentence-level coreferential relation can significantly improve the performance of solv-

ing coreference resolution task. The experiments on OntoNotes dataset shows that

quality of solution can be boosted up to 5.84%.

5. An original model for learning sentence-level coreferential relationships was introduced.

Incorporation of this model in the baseline coreference architecture improved it’s per-

formance for English.

6. Application of the model with sentence coreference module for Russian language al-

lowed to achieve state of the art of 58.42% average F1 on RuCor dataset.
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