МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

На правах рукописи

Жила Александра Игоревна

Топологические инварианты системы: «Шар Чаплыгина с ротором на плоскости»

Специальность 01.01.04 — геометрия и топология

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук

Москва — 2020

Работа выполнена на кафедре дифференциальной геометрии и приложений Механико-математического факультета ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова».

Научные руководители:	Фоменко Анатолий Тимофеевич
	доктор физико-математических наук,
	профессор, академик РАН
	Ошемков Андрей Александрович
	доктор физико-математических наук,
	профессор
Официальные оппоненты:	Соколов Сергей Викторович,
	доктор физико-математических наук, ФГАОУ
	ВО «Московский физико-технический институт
	(национально-исследовательский университет)»,
	заведующий кафедрой теоретической механики.
	Рябов Павел Евгеньевич,
	доктор физико-математических наук, доцент,
	ФГОБУ ВО «Финансовый университет при
	Правительстве Российской Федерации»,
	Факультет информационных технологий и анализа
	больших данных, Департамент анализа данных
	и машинного обучения, профессор.
	Цветкова Анна Валерьевна,
	кандидат физико-математических наук,
	Институт проблем механики им. А.Ю. Ишлинского
	РАН, Лаборатория механики природных катастроф,
	младший научный сотрудник.

Защита диссертации состоится 23 октября 2020 года в 16 часов 45 минут на заседании диссертационного совета МГУ.01.17 при ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова» по адресу: Российская Федерация, 119234, Москва, ГСП-1, Ленинские горы, д. 1, МГУ имени М. В. Ломоносова, Механико-математический факультет, аудитория 14-08.

E-mail: VGChdissovet@yandex.ru

С диссертацией, а так же со сведениями о регистрации участия в удаленном интерактивном режиме в защите можно ознакомиться на сайте ИАС "ИСТИНА": https://istina.msu.ru/dissertations/319501481

Автореферат разослан 23 сентября 2020 года.

Ученый секретарь диссертационного совета МГУ.01.17 ФГБОУ МГУ, д.ф.-м.н., доцент

May

Чирский В. Г.

Общая характеристика работы

Актуальность темы и степень ее разработанности

В диссертации исследуется топология слоения Лиувилля системы "шар Чаплыгина с ротором". В работе находят активное практическое применение ранее предложенные методы вычисления инвариантов, а также теория топологической классификации, построенная А.Т.Фоменко и Х.Цишангом, а затем развитая в работах А.В.Болсинова и многих других математиков.

В симплектической геометрии и классической механике обнаружено большое количество интересных систем с неголономными связями. Изучение динамики неголономных систем было выделено в независимую область исследования симплектической топологии и теоретической механики, когда стало понятно, что стандартный формализм Лагранжа неприменим к системам с неголономными связями. Однако, некоторые неголономные системы, называемые конформно–гамильтоновыми, сохраняют интеграл энергии и другие тензорные инварианты. Таким образом, для их анализа применимы методы обычной гамильтоновой механики, в том числе и новые топологические.

В настоящей диссертации изучается топология слоения Лиувилля, то есть пространство замыканий решений системы. С помощью топологических инвариантов можно выявлять эквивалентные и неэквивалентные интегрируемые системы. Все исследования проводятся в рамках теории Фоменко классификации интегрируемых систем, основанной на инвариантах Фоменко, использующих бифуркационные комплексы.

В данной диссертации исследуются топологические инварианты одной конформно – гамильтоновой системы, а именно, рассматривается задача о качении уравновешенного динамически несимметричного шара с ротором по горизонтальной шероховатой плоскости. Эту систему называют также шаром Чаплыгина с ротором. Ранее в работе А.Ю. Москвина¹ для исследования динамики системы и нахождения особых решений были построены бифуркационная диаграмма отображения момента и бифуркационный комплекс. Отметим, что частным случаем данной системы является случай Жуковского, который хорошо изучен и подробно описан, например, в книге Интегрируемые гамильтоновы системы². Естественное продолжение исследований А.Ю. Москвина — это проведение тонкого лиувиллевого анализа системы. В настоящей диссертации проверена невырожденность особенностей, описано слоение Лиувилля в окрестности особых точек отображения момента, построены разделяющие кривые для определения типов изоэнергетических поверхностей, найдены инварианты Фоменко и исследована грубая лиувил-

¹Москвин А.Ю., Топология особенностей дробно-рациональных интегрируемых систем , Кандидатская диссертация 2010.

²Болсинов А.В. Фоменко А.Т., Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, Ижевск: РХД, 1999.

лева эквивалентность данной системы с системой Жуковского.

Цели и задачи диссертации

Диссертационная работа преследует следующие цели:

- 1. Исследовать невырожденность особых точек системы шар Чаплыгина с ротором.
- 2. Вычислить все инварианты Фоменко системы шар Чаплыгина с ротором и среди найденных слоений Лиувилля найти слоения, которые эквивалентны ранее изученной системе Жуковского.
- 3. Найти топологические типы изоэнергетических поверхностей системы шар Чаплыгина с ротором.
- 4. Для системы шар Чаплыгина с ротором построить такие разделяющие кривые на плоскости $\mathbb{R}^2(h,c)$ при различных значениях параметров системы, что меченые молекулы системы будут совпадать для всех точек из одной области.
- 5. Классифицировать матрицы склейки круговых молекул точки типа центрцентр.

Положения, выносимые на защиту

Основные результаты диссертации заключаются в следующем:

- 1. Для шара Чаплыгина с ротором невырожденность точек ранга 1 и 0, а также типы невырожденных особенностей системы, полностью определяются бифуркационной диаграммой отображения момента. А именно, в случае, когда у ротора нет нулевых компонент, для всех допустимых значений параметров системы верно следующее: все точки ранга 0, лежащие в прообразах точек трансверсального пересечения двух или трех дуг бифуркационной диаграммы, невырождены и имеют тип центр-центр или центр-седло; все вырожденные точки ранга 0 лежат в прообразе точек, в которых пересекаются больше трех дуг бифуркационной диаграммы; все вырожденные точки ранга 1 лежат в прообразе точек возврата и точек касания дуг бифуркационных диаграмм.
- 2. Существуют такие значения параметров системы Чаплыгина, что для малых уровней энергии возникают молекулы, не встречающиеся в случае Жуковского. При этом на высоких уровнях энергии данные системы грубо лиувиллево эквивалентны.

- 3. В системе шар Чаплыгина с ротором встречаются 3 топологических типа изоэнергетических поверхностей: $\mathbb{R}P^3$, $S^1 \times S^2$, S^3 . Кривые, разделяющие указанные топологические типы изоэнергетических поверхностей и являющиеся множеством критических значений отображения $H \times C : S^2 \times \mathbb{R}^3 \to \mathbb{R}^2(h,c)$, описаны явными формулами и построены при различных значениях параметров системы.
- 4. Кривые на плоскости $\mathbb{R}^2(h, c)$, разделяющие области с различными типами меченых молекул, описаны явными формулами. Получен полный, возможно избыточный, список возможных грубых молекул и топологических типов трехмерных поверхностей для всех возможных 39 допустимых кривых. Если верна гипотеза о реализуемости только 6 типов бифуркационных диаграмм для системы шар Чаплыгина с ротором, то разделяющие кривые на плоскости $\mathbb{R}^2(h, c)$ задают ровно 27 различных областей с типами меченых молекул для всех значений девяти параметров системы, т.е. каждое из трехмерных многообразий, соответствующих допустимым кривым на этих 6 типах диаграмм, реализуется как изоэнергетическая поверхность при некоторых значениях параметров K, I, d.
- 5. Матрицы склейки круговых молекул точки типа центр-центр классифицированы в зависимости от взаимного расположения дуг бифуркационной диаграммы в окрестности такой точки. В частности, для каждого из возможных расположений этих дуг определено значение *є*-метки: +1 или -1.

Объект и предмет исследования

Оъектом исследований является интегрируемая гамильтонова система: шар Чаплыгина с ротором.

Предмет исследования — топологические инварианты и топология слоений Лиувилля данной системы.

Научная новизна

Все основные результаты диссертации являются исключительно оригинальными, получены автором самостоятельно, и её новизна заключаются в следующем:

- 1. Исследована невырожденность особых точек системы шар Чаплыгина с ротором.
- 2. Вычислены все инварианты Фоменко системы шар Чаплыгина с ротором и изученна эквивалентность данной системы и системы Жуковского.

- 3. Найдены топологические типы изоэнергетических поверхностей системы шар Чаплыгина с ротором.
- Для системы шар Чаплыгина с ротором построены такие разделяющие кривые на плоскости R²(h, c) при различных значениях параметров системы, что меченые молекулы системы совпадают для всех точек из одной области.
- 5. Классифицированны матрицы склейки круговых молекул точки типа центрцентр.

Методы исследования

В работе используются методы топологического анализа интегригуемых гамильтоновых систем с двумя степенями свободы, построенные А.Т.Фоменко и Х.Цишангом, а затем развитые в работах А.В.Болсинова, А.А.Ошемкова и многих других математиков. При проверке невырожденности положений равновесия используются методы линейной алгебры и классической дифференциальной геометрии с привлечением компьютерных пакетов символьных вычислений.

Теоретическая и практическая ценность работы

Диссертация имеет теоретический характер. Полученные результаты могут быть использованы для установления изоморфизмов лиувиллевых слоений различных интегрируемых систем. Полученная классификация матриц склейки особенностей типа центр-центр может быть применима для вычисления инвариантов Фоменко—Цишинга интегрируемых гамильтоновых систем.

Апробация работы

Результаты опубликованы в четырёх статьях [1-4] (см. стр. 18) из которых четыре опубликованы в журналах, удовлетворяющие положению о присуждении учёных степеней в МГУ. Результаты диссертации были представлены на следующих всероссийских и международных конференциях:

- Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов 2019 МГУ, Россия, 9-12 апреля 2019
- 2018 International Conference on Topology and its Applications, Нафпактос, Греция, 7-11 июля 2018

- Международная молодежная научная школа «Актуальные направления математического анализа и смежные вопросы», г.Воронеж, Россия, 13-16 ноября 2017
- Молодежная Международная научная конференция «Методы современного математического анализа и геометрии и их приложения», г. Воронеж, Воронежский государственный педагогический университет, Россия, 23-25 декабря 2016
- Международная конференция «Анализ, вероятность и геометрия», Москва, Россия, 25 сентября 2 октября 2016
- Международная конференция по алгебре, анализу и геометрии (26 июня 2 июля 2016г., Казань), Казань, Россия, 26 июня 2 июля 2016
- Александровские чтения-2016, г. Москва, МГУ им. М.В. Ломоносова,
- XXIII Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов», Москва, Россия, 11-15 апреля 2016
- Воронежская зимняя математическая школа С. Г. Крейна 2016, Воронеж, Россия, 25-31 января 2016
- XXII Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов-2015», Москва, Россия, 13-17 апреля 2015

Результаты диссертационной работы докладывались на семинаре «Современные геометрические методы» (мех-мат МГУ) и на семинаре «Алгебра и топология интегрируемых систем» (мех-мат МГУ).

Структура и объём работы

Диссертация состоит из введения и трех глав. Текст работы изложен на 88 страницах. Список литературы содержит 15 наименований.

Содержание работы

Во введении формулируется цель работы, кратко излагаются ее результаты и содержание, а также освещается место данных исследований в современной механике твердого тела.

Содержание главы 1

В первой главе вводятся основные понятия и излагаются ключевые теоремы топологической классификации интегрируемых гамильтоновых систем. Описаны фазовое пространство и конформно-гамильтоновы дифференциальные уравнения на пуассоновых многообразиях, которые возникают в задачах неголономной механики.

Определение. Слоением Лиувилля, отвечающим интегрируемой системе, называется разбиение многообразия M^{2n} на связные компоненты совместных поверхностей уровня интегралов f_1, f_2, \ldots, f_n .

В теории топологической классификации интегрируемых гамильтоновых систем традиционно рассматривают несколько типов их изоморфизмов.

Определение. Две интегрируемые гамильтоновы системы (v_1, M_1) и (v_2, M_2) лиувиллево эквивалентны, если существует диффеоморфизм $\varphi : M_1 \to M_2$ переводящий слои Лиувилля одной системы в слои другой.

Это отношение можно немного ослабить, тогда получаем понятие грубой лиувиллевой эквивалентности:

Определение. Две интегрируемые гамильтоновы системы (v_1, M_1) и (v_2, M_2) грубо лиувиллево эквивалентны, если существует гомеоморфизм между базами слоений Лиувилля, который локально (т.е. в окрестности каждой точки) поднимается до послойного гомеоморфизма слоений Лиувилля.

В главах 2 и 3 рассмотрены гамальтоновы системы с двумя степенями свободы, то есть такие, у которых фазовое симплектическое многообразие M имеет размерность 4, а интегрируемость гарантируется существованием лишь одного функционально независимого с гамильтонианом H дополнительного интеграла F. Изоэнергетической поверхностью называется поверхность уровня гамильтониана $Q_h^3 = \{x \in M | H(x) = h\}$. Полным инвариантом слоения Лиувилля на неособой изоэнергетической поверхности является инвариант Фоменко-Цишанга, также называемый меченой молекулой. Он представляет собой граф, ребра которого отвечают однопараметрическим семействам торов Лиувилля, а вершины — критическим слоям, в которых происходят бифуркации. Ребра и некоторые группы вершин этого графа снабжены числовыми метками.

Определение (А. Т. Фоменко). Класс лиувиллевой эквивалентности окрестности особого слоя слоения Лиувилля называется 3-атомом.

С конструктивной точки зрения, 3-атом — это трехмерное многообразие со структурой слоения Лиувилля. Это многообразие содержит ровно один сингулярный слой. Граница состоит из конечного числа торов. Количество критических

окружностей на сингулярном слое называется *сложсностью атома*. В книге А.В. Болсинова и А.Т. Фоменко приводится классификация возможных 3-атомов в зависимости от их сложности. В данной работе встречаются только атомы A и B.

Если каждой вершине графа, отвечающего слоению Лиувилля, сопоставить подходящий 3-атом, то получим *грубую молекулу* (инвариант Фоменко) слоения Лиувилля. Грубая молекула несет информацию о слоении Лиувилля и позволяет локально восстановить структуру вблизи как регулярных, так и сингулярных слоев.

Теорема (А. Т. Фоменко). Две интегрируемые гамильтоновы системы (v_1, Q_1^3) $u(v_2, Q_2^3)$ грубо лиувиллево эквивалентны в том и только том случае, когда их грубые молекулы совпадают.

Способ склейки глобального изоэнергетического многообразия из 3-атомов задается числовыми метками трех типов: r, ε и n. Вместе с грубой молекулой они и составляют инвариант Фоменко-Цишанга. Имеет место следующий результат

Теорема (Фоменко-Цишанг). Две интегрируемые гамильтоновы системы (v_1, Q_1^3) $u(v_2, Q_2^3)$ лиувиллево эквивалентны в том и только том случае, когда их меченые молекулы совпадают.

Содержание главы 2

Во второй главе рассматривается задача о качении уравновешенного динамически несимметричного шара по абсолютно шероховатой горизонтальной плоскости, называемая случаем шара Чаплыгина с ротором. В таком случае скорость точки контакта равна нулю. Движение шара в проекциях на главные оси, связанные с шаром, описывается уравнениями

$$\begin{cases} \dot{M} = (M+K) \times \omega, & M = J\omega - d(\gamma, \omega)\gamma, & J = I + dE, \\ \dot{\gamma} = \gamma \times \omega, & d = mr^2 \ge 0, & E = \|\delta_{ij}\|. \end{cases}$$

где ω — вектор угловой скорости, γ — орт вертикали, $I = \text{diag}(I_1, I_2, I_3)$ — тензор инерции шара относительно его центра, m — масса шара, r — его радиус. Вектор M имеет смысл кинетического момента шара относительно точки контакта, вектор K — постоянный вектор момента ротора.

Система обладает четырьмя первыми интегралами:

$$H = \frac{1}{2}(M,\omega), \quad N = (M+K,M+K), \quad C = (M+K,\gamma), \quad G = (\gamma,\gamma).$$

Согласно работе Борисова А.В. и Мамаева И.С.³, рассматриваемая система

³Борисов А.В. & Мамаев И.С., Гамильтоновость задачи Чаплыгина о качении Шара, Мат. заметки 1987. 70, No. 5. c. 793–795.

является конформно-гамильтоновой (то есть вида $\dot{\mathbf{x}} = \mu(\mathbf{x})$ sgrad $H(\mathbf{x})$) с гамильтонианом H и приводящим множителем

$$\mu(M,\gamma) = 1/\sqrt{1-d(\gamma,J^{-1}\gamma)}$$

относительно скобки Пуассона, которая в координатах (M, γ) задается следующими формулами:

$$\{M_i, M_j\} = \varepsilon_{ijk}\rho(M_k + K_k - g\gamma_k), \{M_i, \gamma_j\} = \varepsilon_{ijk}\rho\gamma_k, \{\gamma_i, \gamma_j\} = 0,$$

где ε_{ijk} — тензор Леви-Чивитта. При этом были введены следующие обозначения:

$$\begin{split} \rho &= \sqrt{1-d(\gamma,J^{-1}\gamma)},\\ g &= d(\omega,\gamma) = \frac{d(J^{-1}M,\gamma)}{1-d(\gamma,J^{-1}\gamma)} \end{split}$$

Для указанной скобки Пуассона интегралы C и G являются функциями Казимира. Они расслаивают фазовое пространство $\mathbb{R}^6(M,\gamma)$ на четырехмерные симплектические листы

$$\mathcal{M}_{c,a}^4 = \{ C = c, G = a \}.$$

Замечание. Система шар Чаплыгина зависит от 7 параметров: d, трех компонент K_i ротора $K = (K_1, K_2, K_3)$ и трех компонент I_i тензора инерции $I = diag(I_1, I_2, I_3)$. Молекулы системы зависят от 9 параметров: к перечисленным выше семи добавляются значения интегралов C = c и H = h.

В дальнейшем будем считать, что ротор не имеет нулевых компонент, т.е. $K_i \neq 0$, а главные моменты инерции упорядочены $0 < I_1 < I_2 < I_3$. Параметр d не отрицателен. Отметим, что в случае d = 0 система уравнений, задающая систему шар Чаплыгина с ротором, совпадает с уравнениями для случая Жуковского (см., например, в работе ⁴ Борисова А.В. и Мамаева И.С.). В силу определения H и C, значения H всегда будут больше или равны 0.

Рассмотрим отображение момента, определяемое следующим образом:

$$H \times F : M^4 \to \mathbb{R}^2(h, f).$$

Критическими точками называют точки, в которых ранг дифференциала отображения момента меньше двух. Образ критических точек отображения момента называют бифуркационной диаграммой. Обычно она состоит из набора гладких кривых, имеющих конечное число точек возврата, точек касания и точек транс-

⁴Борисов А.В. & Мамаев И.С., Динамика твердого тела, РХД, Ижевск 2005.

версального пересечения дуг (будем называть эти точки особыми для бифуркационной диаграммы).

Для задачи шар Чаплычина с ротором на плоскости найдены координаты особых точек буфуркационной диаграммы системы и проверена невырожденность этих особенностей. Следующая теорема является одной из основных в диссертации.

Теорема. Для шара Чаплыгина с ротором невырожденность точек ранга 1 и 0, а также типы невырожденных особенностей системы полностью определяются бифуркационной диаграммой отображения момента. А именно, в случае, когда у ротора нет нулевых компонент, для всех допустимых значений перечисленных выше параметров системы выполнены следующие утверждения:

- 1. Все критические точки в прообразе неособых точек бифуркационных диаграмм являются невырожденными точками ранга 1. При этом, в системе присутствуют только два типа перестроек: эллиптические точки ранга 1 соответствуют перестройке типа A, а все гиперболические точки ранга 1 — перестройке типа B.
- 2. В прообразе любых особых точек бифуркационной диаграммы (то есть в прообразе точек возврата, точек касания и точек трансверсального пересечения дуг) лежит либо вырожденная точка ранга 1, либо точка ранга 0.
- 3. Все вырожденные точки ранга 1 лежат в прообразе точек возврата и точек касания дуг бифуркационных диаграмм.
- 4. Точки ранга 0 лежат в прообразе точек трансверсального пересечения дуг бифуркационных диаграмм.
- 5. Вырожденные точки ранга 0 лежат в прообразе точек, в которых одновременно пересекаются больше трех дуг бифуркационных диаграмм.
- 6. Все невырожденные точки ранга 0 лежат в прообразах точек трансверсального пересечения двух или трех дуг бифуркационных диаграмм.
- 7. В системе шар Чаплыгина с ротором из невырожденных особенностей ранга 0 присутствуют только точки типа центр-центр и центр-седло. Все особые точки типа центр-седло соответствуют прямому произведению атомов A и B.

Тип особых точек ранга 0 однозначно определяется видом бифуркационных диаграмм (и типом перестроек торов Лиувилля) в окрестности образа этой точки. Точнее, точка имеет тип центр-седло тогда и только тогда, когда в ее окрестности существует перестройка типа В. Далее в диссертации автором найдены случаи грубой лиувиллевой эквивалентности системы Жуковского и системы шар Чаплыгина с ротором. Приведены примеры грубых молекул, которые присутствуют в обеих системах, а также найдена молекула, которая присутствует в системе шара Чаплыгина с ротором, но не встречается в случае Жуковского.

Теорема. 1) При значениях параметров системы "шар Чаплыгина с ротором" без нулевых компонент, таких, что $c^2 \ge d^2 \langle J^{-1}K, J^{-1}K \rangle$, каждому уровню H =const₁ можно поставить в соответствие уровень $H = \text{const}_2$ случая Жуковского так, что отвечающие этим уровням грубые молекулы совпадут.

2) Существуют такие значения параметров системы Чаплыгина при $c^2 < d^2 \langle J^{-1}K, J^{-1}K \rangle$, что для малых уровней энергии возникают молекулы, не встречающиеся в случае Жуковского.

Изоэнергетические 3-поверхности $Q_{h,c}^3 = \{H = h, C = c, G = 1\}$ задаются двумя параметрами h и c, то есть значениями интегралов H и C, так как G = 1. Для описания топологического типа $Q_{h,c}^3$ мы рассмотрим множество критических значений отображения $H \times C : S^2 \times \mathbb{R}^3 \to \mathbb{R}^2(h,c)$, которое является объединением кривых, разбивающих плоскость $\mathbb{R}^2(h,c)$ на области так, что для всех точек (h,c), принадлежащих одной области, тип соответствующих изоэнергетических поверхностей $Q_{h,c}^3$ будет одним и тем же. В дальнейшем такие кривые мы будем иногда называть кривыми, разделяющими топологический тип изоэнергетических поверхностей.

Теорема. Кривые на плоскости $\mathbb{R}^2(h, c)$, разделяющие области с различным топологическим типом изоэнергетических 3-поверхностей, состоят из следующих множесть:

1. набор кривых $\widetilde{\sigma}$

$$\begin{cases} c = \pm \sqrt{\left(\sum_{i=1}^{3} \frac{K_i^2}{(J_i - \lambda)^2}\right) (d - \lambda)^2} \\ h = \frac{1}{2} \left(\sum_{i=1}^{3} \frac{K_i^2 J_i}{(J_i - \lambda)^2} - d \sum_{i=1}^{3} \frac{K_i^2}{(J_i - \lambda)^2}\right), \end{cases}$$
(1)

$$e \partial e \ \lambda \in (-\infty, 0) \cup (0, d) \cup (d, J_1) \cup (J_1, J_2) \cup (J_2, J_3) \cup (J_3, \infty)$$

2. отрезок $\widetilde{t_0}$

$$\left[\left(0; -\sqrt{\sum_{i=1}^{3} K_i^2}\right), \left(0; \sqrt{\sum_{i=1}^{3} K_i^2}\right)\right]$$

Кривые $\tilde{\sigma}$, отрезок $\tilde{t_0}$ и топологические типы изоэнергетических поверхностей для каждой области указаны на рисунке ниже.

Чтобы описать все возможные виды меченых молекул W^* нужно определить, каким образом прямая h = const пересекает бифуркационную диаграмму.

Теорема. Кривые, разделяющие области с различными типами меченых молекул, состоят из объединения следующих множеств:

1. набор кривых $\widetilde{\sigma}$

$$\begin{cases} c = \pm \sqrt{\left(\sum_{i=1}^{3} \frac{K_i^2}{(J_i - \lambda)^2}\right)(d - \lambda)^2} \\ h = \frac{1}{2} \left(\sum_{i=1}^{3} \frac{K_i^2 J_i}{(J_i - \lambda)^2} - d\sum_{i=1}^{3} \frac{K_i^2}{(J_i - \lambda)^2}\right), \end{cases}$$

ede $\lambda \in (-\infty, 0) \cup (0, d) \cup (d, J_1) \cup (J_1, J_2) \cup (J_2, J_3) \cup (J_3, \infty)$

2. отрезок $\widetilde{t_0}$

$$\left[\left(0; -\sqrt{\sum_{i=1}^{3} K_i^2}\right), \left(0; \sqrt{\sum_{i=1}^{3} K_i^2}\right) \right]$$

3. кривая \widetilde{s}

$$h = \frac{1}{2} \left(\sum_{i=1}^{3} \frac{K_i^2}{J_i} - \frac{c^2}{d} \right)$$

4. набор кривых \tilde{l}

$$\begin{cases} c = \pm \sqrt{\left(\sum_{i=1}^{3} \frac{J_i K_i^2}{(J_i - \lambda)^3}\right) \frac{(d - \lambda)^3}{d}} \\ h = \frac{1}{2} \left(\sum_{i=1}^{3} \frac{K_i^2 J_i}{(J_i - \lambda)^2} - (d - \lambda) \sum_{i=1}^{3} \frac{J_i K_i^2}{(J_i - \lambda)^3}\right), \end{cases}$$

где λ изменяется на некоторых отрезках: $[a_1, b_1] \subset (J_1, J_2)$ (эта часть кривой \tilde{l} соответствует точке L_1 на бифуркационной диаграмме), $[a_2, b_2] \subset (J_2, J_3)$ (эта часть кривой \tilde{l} соответствует точке L_2 на бифуркационной диаграмме), $[a_3, b_3] \subset (0, d)$ (эта часть кривой \tilde{l} соответствует точке L_3 на бифуркационной диаграмме). При этом в концах отрезка $[a_1, b_1]$ кривая \tilde{l} соответствует точкам возврата M_3 и \tilde{M}_3 , в концах отрезка $[a_2, b_2]$ точкам возврата M_4 и \tilde{M}_4 , а в концах отрезка $[a_3, b_3] -$ точкам M_1 и \tilde{M}_1 .

Приведем пример набора кривых, разделяющих области с различными типами меченых молекул, полученный компьютерным анализом для значений параметров системы K = (3.34, 1.12, 2.82), I = (0.87, 2.43, 4.44), d = 1.79.

Отметим, что для точек $\widetilde{Z}, \widetilde{S}, \widetilde{P_0}$ порядок их координат на оси h зафиксирован для любых значений параметров системы шар Чаплыгина с ротором, а именно: $H(\widetilde{S}) < H(\widetilde{P_0}) < H(\widetilde{Z})$. Это легко видно из значений координат данных точек. При этом точки $\widetilde{L_1}$ и $\widetilde{L_2}$ могут находиться на любых интервалах, на которые точки $\widetilde{Z}, \widetilde{S}, \widetilde{P_0}$ делят ось h > 0

Замечание. В зависимости от взаимного расположения точек $\widetilde{L_1}, \widetilde{L_2}, \widetilde{Z}, \widetilde{S}, \widetilde{P_0}$ относительно их координат на оси h можно получить как минимум 20 качественно различных диаграмм.

Исходя из формул бифуркационных диаграмм в теореме А.Ю. Москвина⁵, единственные точки, чье взаимное положение друг относительно друга на $\mathbb{R}(h, n)$ мы не можем точно определить, это точки возврата L_1 , L_2 , L_3 . Следовательно, если кроме указанных на рисунках ниже а) – е) могли бы существовать еще типы бифуркационных диаграмм, то это были бы только диаграммы ж) – л) с рисунков ниже. При этом в процессе многочисленных компьютерных экспериментов было замечено, что при увеличении значения параметра *с* точка L_3 стремится к прямой $n = c^2$ со значительно большей скоростью, чем точки L_1 и L_2 . На основе данного наблюдения была сфомулирована гипотеза:

На рисунках ниже приведены 6 бифуркационных диаграмм а) – е) , обнаруженных в результате компьютерных экспериментов. Диаграммы типов ж) – л) не были обнаружены в результате компьютерных экспериментов.

⁵Москвин А.Ю., Топология особенностей дробно-рациональных интегрируемых систем, Кандидатская диссертация 2010.

Гипотеза. Перечисленные на рисунке шесть типов обнаруженных в результате компьютерных экспериментов диаграмм a) – e) исчерпывают все возможные типы бифуркационных диаграмм для всех значений параметров общего положения. В том числе, ни при каких значениях параметров системы не реализуются бифуркационные диаграммы \mathcal{H}) – Λ).

В силу данной гипотезы в системе реализуются только 6 типов бифуркационных диаграмм. Для этих 6 типов нами получена классификация грубых молекул и многообразия Q^3 .

- **Теорема.** 1. Для каждой из допустимых кривых для бифуркационных диаграмм из гипотезы (см пункт 2.7 второй главы диссертации) грубая молекула и топологический тип соответствующих трехмерных многообразий указаны в таблице в пункте 2.7 второй главы диссертации.
 - 2. Каждое из трехмерных многообразий, соответствующих допустимым кривым из пункта 1 данной теоремы реализуется как изоэнергетическая поверхность при некоторых значениях параметров K, I, d.
 - 3. Если гипотеза верна, то существует ровно 27 различных областей с типами меченых молекул для всех значений девяти параметров системы шар Чаплыгина с ротором.

Отметим, что если и существуют бифуркационные диаграммы, не попадающие под классификацию типов диаграмм из гипотезы, то это диаграммы из списка пяти типов бифуркационных диаграмм (ж) - (л), которые не были обнаружены в результате компьютерных экспериментов. Мы пока не знаем, существуют ли такие значения параметров системы, для которых эти диаграммы действительно реализуются. Но, тем не менее, мы вычислили молекулы и топологические типы трехмерных поверхностей для допустимых кривых 28 – 39 (см пункт 2.7 второй главы диссертации) на этих бифуркационных диаграммах. Они указаны в таблице в пункте 2.7 второй главы диссертации.

Содержание главы 3

В **третьей главе** предложен способ явного задания ориентации базисных циклов и найдены матрицы склейки на круговых молекулах точек типа центр-центр, в зависимости от взаимного расположения дуг бифуркационной диаграммы. Этот способ помогает в дальнейшем быстро вычислять *є*-метки некоторых молекул для различных интегрируемых гамильтоновых систем.

Разные авторы часто в своих работах подходят к выбор ориентации различными способами, а значение ε -метки напрямую зависит от выбора ориентации. Поэтому в данной работе предлагается введение единого подхода к выбору ориентации, согласующееся с теорией из книги⁶ Интегрируемые гамильтоновы системы.

Пусть две кривые на бифуркационной диаграмме, каждая из которых отвечает перестройкам типа A, пересекаются в точке, прообраз которой содержит точку ранга 0 типа центр-центр. Проведем допустимую кривую, соединяющую эти кривые на бифуркационной диаграмме, и рассмотрим тор T, лежащий в прообразе одной из ее точек. На этот тор приходят базисные циклы с торов, расположенных около двух описанных выше кривых.

Рассматривая пары циклов $(\lambda_{\alpha_1}, \mu_{\alpha_1})$ и $(\lambda_{\alpha_2}, \mu_{\alpha_2})$, приходящие на тор T, как базисы в группе одномерных гомологий, мы получаем матрицу склейки:

$$C = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \quad \text{где} \quad \begin{pmatrix} \lambda_{\alpha_1} \\ \mu_{\alpha_1} \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \lambda_{\alpha_2} \\ \mu_{\alpha_2} \end{pmatrix}.$$

На граничном торе полнотория в качестве первого базисного цикла λ берется меридиан полнотория, т.е. цикл, стягивающийся в точку внутри полнотория, а в качестве второго цикла μ — произвольный цикл, дополняющий λ до базиса. Ориентация цикла μ задается потоком sgrad H, после чего ориентация цикла λ однозначно определяется ориентацией на граничном торе. Зафиксируем правила, с помощью которых мы будем задавать ориентацию на граничном торе полнотория.

Пусть H — гамильтониан, а F — дополнительный интеграл гамильтоновой системы на симплектическом многообразии M^4 . Рассмотрим отображение момента $\mathcal{F} = H \times F : M^4 \to \mathbb{R}^2(h, f)$. Образ отображения момента в окрестности точки типа центр-центр на плоскости $\mathbb{R}^2(h, f)$ выглядит как "угол", ограниченный двумя дугами бифуркационной диаграммы. Прообраз кривой с концами на этих дугах является трехмерным многообразием $Q^3_{\gamma} = \{x \in M^4 | \mathcal{F}(x) \in \gamma\}$, гомеоморфным трехмерной сфере S^3 . При этом прообразами концов данной кривой являются критические окружности (на которых sgrad H и sgrad F зависимы), а прообразами внутренних точек кривой — торы Лиувилля. Любой такой тор T^2 разбивает Q^3_{γ} на два полнотория, т.е. является граничным тором для каждого из них. Ориентация на торе T^2 зависит от того, для какого из двух полноторий мы рассматриваем его как граничный тор, и определяется следующим образом.

- 1. На симплектическом многообразии M^4 ориентация задана формой $\omega \wedge \omega$.
- 2. Ориентация на многообразии Q_{γ}^3 задается нормалью к Q_{γ}^3 в M^4 , т.е. тройка векторов e_1, e_2, e_3 в касательном пространстве к Q_{γ}^3 будет положительно ориентирована, если четверка векторов $e_1, e_2, e_3, \overline{n}$ положительно ориенти-

⁶Болсинов А.В. Фоменко А.Т., Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, Ижевск: РХД, 1999.

рована в M^4 . При этом нормаль \overline{n} будем выбирать так, чтобы при отображении момента она переходила в нормаль к кривой γ , направленную во внешнюю сторону по отношению к треугольнику, образованному двумя дугами бифуркационной диаграммы и кривой γ .

3. Ориентация на торе $T^2 \subset Q^3_{\gamma}$ задается нормалью \overline{N} к тору T^2 в Q^3_{γ} , т.е. пара векторов e_1, e_2 в касательном пространстве к T^2 будет положительно ориентирована, если тройка векторов e_1, e_2, \overline{N} положительно ориентирована в Q^3_{γ} . При этом нормаль \overline{N} будем выбирать так, чтобы она была внешней нормалью для полнотория, граничным тором которого является рассматриваемый тор T^2 .

Итог: положительная ориентированность пары векторов e_1, e_2 на торе T^2 задается условием

$$\omega \wedge \omega(e_1, e_2, \overline{N}, \overline{n}) > 0.$$

Матрицы склейки для точки центр-центр:

Теорема. Матрицы склейки для круговых молекул точки типа центр-центр в зависимости от взаимного расположения дуг бифуркационной диаграммы (при задании положительной ориентации условием $\omega \wedge \omega(\dot{\lambda}, \dot{\mu}, \overline{N}, \overline{n}) > 0$ и подходящем выборе базисных циклов λ и μ) приведены на рисунке ниже. В частности, ε -метка равна —1 для случаев 1–10 и 1 для случаев 11–18.

Вопрос о виде матриц склейки в случае точек типа центр-центр также поднимался в работе В.А. Кибкало⁷. В его работе ориентация базиса (u, v) в $T_x T^2$ задавалась условием $\omega \wedge \omega(\text{grad } H, N, u, v) > 0$, где N - вектор внешней нормали 3-атома, лежащего в изоэнергетическом многообразии, т.е. множестве H = h.

В явном виде матрицы склейки на ребре круговой молекулы такой особой точки в указанной выше работе найдены не были. Результат В.А. Кибкало задает соотношения на допустимые базисы, применимые для задач, аналогичных решенной в работе⁸ Болсинова А.В., Рихтера П.Х., Фоменко А.Т.: выражение допустимых базисов для дуг бифуркационной диаграммы в терминах однозначно определенных λ -циклов всех этих дуг, т.е. элементов целочисленных решеток на плоскости.

Заключение

В диссертации были получены результаты о топологических свойствах системы шар Чаплыгина с ротором. Полностью исследована невырожденность особенностей данной системы. Вычислены все инварианты Фоменко данной системы и изучена эквивалентность данной системы и системы Жуковского. Сформулирована гипотеза о существовании только шести типов бифуркационных диаграмм для данной системы. В рамках этой гипотезы показано, что существует ровно 27 различных областей с одинаковым типом инвариантов системы (для всех значений девяти параметров системы). Изучены все возможные допустимые кривые, и получен, возможно избыточный, список возможых грубых молекул и топологических типов трехмерных поверхностей для допустимых кривых. Следующими перспективными шагами в теме изучения системы шар Чаплыгина с ротором может быть построение инвариантов Фоменко-Цишанга данной системы и подробное изучение того, верна ли гипотеза о шести типах бифуркационных диаграмм. Отдельным направлением в диссертации является класификация матриц склейки круговых молекул точки типа центр-центр. Это исследование носит теоретический характер, и может быть полезно для будующих вычислений *є*-меток для некоторых молекул в различных системах.

Благодарности

Автор выражает благодарность своим научным руководителям академику РАН проф. А.Т. Фоменко и д-ру физ.-мат. наук проф. А.А. Ошемкову за постановку

⁷V. Kibkalo, Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4), Lobachevskii Journal of Mathematics. 2018. **39**, No. 9. p. 1331–1334.

⁸Болсинов А.В., Рихтер П.Х., Фоменко А.Т., Метод круговых молекул и топология волчка Ковалевской, Матем. сб. 2000. **191**, No.2, с. 3-42

задачи и ценные обсуждения в ходе работы над диссертационной работой. Также автор благодарен всему коллективу кафедры дифференциальной геометрии и приложений механико-математического факультета МГУ за вдохновляющую атмосферу и поддержку.

Список публикаций автора по теме диссертации

Статьи в рецензируемых научных изданиях, рекомендованных для защиты в диссертационном совете МГУ

 Жила А.И., Топологические типы изоэнергетических поверхностей системы "шар Чаплыгина с ротором", Вестник Московского университета. Серия 1: Математика. Механика. — 2020. — N.3. — с.52–56.

Журнал индексируется в Scopus, РИНЦ, WoS Импакт-фактор 0.348 (за 2018 год)

 Жила А.И., Классификация матриц склейки на круговых молекулах точек типа центр-центр, Фундаментальная и прикладная математика. — 2019. — 22, No.6. — с.85–94.

Журнал индексируется в Scopus, РИНЦ, WoS Импакт-фактор 0.240 (за 2009 год)

3. Zhila A.I., Comparison of the system "chaplygin ball with a rotor" and the zhukovskii system from the rough liouville equivalence point of view, Moscow University Mathematics Bulletin. - 2017. - Vol. 72, no. 6. - P. 245-250.

Журнал индексируется в Scopus, РИНЦ, WoS Импакт-фактор 0.348 (за 2018 год)

4. Zhila A.I., Chaplygin's ball with a rotor: Non-degeneracy of singular points, Moscow University Mathematics Bulletin. - 2016. - Vol. 71, no. 2. - P. 45-54.

Журнал индексируется в Scopus, РИНЦ, WoS Импакт-фактор 0.348 (за 2018 год)