САВЧЕНКОВ СЕРГЕЙ АНАТОЛЬЕВИЧ

СИНТЕЗ МАГНИЕВЫХ ЛИГАТУР ПРИ МЕТАЛЛОТЕРМИЧЕСКОМ ВОССТАНОВЛЕНИИ СОЕДИНЕНИЙ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Специальность 05.16.02 — Металлургия черных, цветных и редких металлов

Автореферат диссертации на соискание ученой степени кандидата технических наук

САНКТ-ПЕТЕРБУРГ – 2019

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский горный университет».

Научный руководитель

доктор технических наук, доцент

Бажин Владимир Юрьевич

Официальные оппоненты:

Никитин Константин Владимирович доктор технических наук, федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет», факультет машиностроения, металлургии и транспорта, декан

Белоусов Михаил Викторович

кандидат технических наук, муниципальное автономное учреждение «Уральский инновационный молодежный центр», директор

Ведущая организация — федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук

Защита диссертации состоится 7 ноября 2019 г. в 14 ч 30 мин на заседании диссертационного совета ГУ 212.224.03 при Санкт-Петербургском горном университете по адресу: 199106, г. Санкт-Петербург, 21 линия, д.2, ауд. 1171а.

С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского горного университета и на сайте www.spmi.ru.

Автореферат разослан 6 сентября 2019 г.

УЧЕНЫЙ СЕКРЕТАРЬ диссертационного совета

БОДУЭН Анна Ярославовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время магниевые сплавы находят свое широкое применение в авиастроении, ракетостроении, автомобилестроении и других отраслях промышленности, при этом ввод редкоземельных металлов придает сплавам уникальные свойства. Легирование магниевых сплавов редкоземельными металлами позволяет повысить рабочие температуры сплавов на 150-200°С по сравнению с высокопрочными магниевыми сплавами. Высокий уровень прочностных свойств, достигаемый в магниевых сплавах на основе систем магний-неодим, магний-гадолиний, магний-иттрий, обуславливает особый к ним интерес со стороны промышленности.

В промышленном масштабе магниевые сплавы производят с применением двойных и тройных лигатур, которые могут быть получены различными способами. Лигатуры являются основным шихтовым материалом, обеспечивающим качество получаемых сплавов. Существующие способы получения магниевых лигатур с РЗМ характеризуются многостадийностью, высокими температурами процесса, а также большими безвозвратными потерями РЗМ. Для отечественной магниевой отрасли задача получения лигатур на основе магния с РЗМ приобретает особую значимость в связи со Стратегией развития металлургической промышленности России, в соответствии с которой, прогнозируется повышение спроса на магниевые сплавы и лигатуры с РЗМ - не менее чем в 2,5 раза к 2020 году.

Большой вклад в развитие теории и практики получения лигатур способом металлотермического восстановления, внесли известные ученые и специалисты: Г.И. Белкин, О.А. Рубель, С.Г. Лямин, С.В. Александровский, Р.А. Сандлер, С.В. Махов, В.И. Напалков, С.П. Яценко, В.М. Скачков, Д.А. Попов, Е.F. Emli, W. Guobing и др., а также научные и производственные коллективы: ФГУП «ВИАМ», «ВАМИ», ИХТТ УрО РАН, ОАО «ВИЛС», АО «Гиредмет», Санкт-Петербургский горный университет, НИТУ «МИСиС», ОАО «Соликамский магниевый завод», АО «Чепецкий механический завод». Однако остается нерешенным значительный круг вопросов, связанных с получением лигатур на основе магния, легированных редкоземельными металлами. В этой связи представляется актуальным обоснование и разработка технологических и технических решений, обеспечивающих высокое извлечение РЗМ в лигатуру при снижении их безвозвратных потерь.

Связь темы диссертации с научно-техническими программами. Работа поддержана грантом Фонда содействия инновациям (договор №10829ГУ/2016 от 29.12.16) по теме: «Разработка технологии получения лигатур на основе магния с редкоземельными металлами», а также грантами Комитета по науке в высшей школе Санкт-Петербурга в 2016, 2017 и 2018 годах. Отдельные этапы работы выполнены в рамках научного проекта 11.4098.2017/ПЧ от 01.01.2017, реализуемого при финансовой поддержке Министерства образования и науки РФ по теме: «Исследование процесса кондиционирования и модифицирования металлургических шламов для повышения эффективности их утилизации на основе разработки энергосберегающих и экологически безопасных технологических решений, адаптированных к современному производственному комплексу».

Цель работы. Научное обоснование и разработка технических решений, обеспечивающих высокое извлечение редкоземельных металлов в лигатуру при металлотермическом восстановлении их соединений.

Основные задачи работы:

- изучение и анализ ключевых технологических направлений патентной активности в области магниевых сплавов с РЗМ в России и за рубежом;
- поиск рациональных способов получения лигатур с P3M, выбор и обоснование параметров перспективного способа их получения;
- физико-химическое обоснование способа получения магниевых лигатур металлотермическим восстановлением соединений РЗМ;
- определение интервалов температур тепловых эффектов при плавлении компонентов выбранной технологической солевой смеси, а также установление температур синтеза при восстановлении РЗМ из солевой смеси магнием, в том числе при добавлении цинка;
- установление экспериментальных зависимостей влияния технологических факторов на выход P3M в лигатуру, включая анализ особенностей процесса восстановления при добавлении цинка;
- разработка технических решений, обеспечивающих высокий выход РЗМ при получении двойных и тройных лигатур на основе магния.

Методы исследования. В работе использованы физические и физико-химические методы анализов: дифференциально-термический

(ДТА), рентгенофлуоресцентный анализ (РФА), рентгеноспектральный (РСА), электронной растровой и световой микроскопии. Аналитические исследования проведены на базе ЦКП Санкт-Петербургского горного университета. Эксперименты проводились в лабораториях кафедры «Металлургии» Санкт-Петербургского горного университета.

Научная новизна работы:

- определены и обоснованы интервалы температур тепловых эффектов при плавлении компонентов солевой смеси KCl-NaCl-CaCl $_2$ -MgCl $_2$ -CaF $_2$ -NdF $_3$ (GdF $_3$), а также при проведении процесса магниетермического восстановления редкоземельных металлов из подобранной солевой смеси, в том числе при вводе цинка.
- обоснован процесс синтеза лигатур на основе магния, заключающийся в том, что при плавлении солевой смеси, включающей в себя фториды редкоземельных металлов, образуются прекурсоры $NaNdF_4$, $Na_5Nd_9F_{32}$, $Na_5Gd_9F_{32}$, из которых восстанавливаются редкоземельные металлы до интерметаллических соединений Mg_xP3M_y .
- доказано, что что при добавлении цинка в магниевый расплав создаются условия для снижения температуры, и сокращения времени синтеза тройных лигатур Mg-Zn-Nd, Mg-Zn-Gd, а при восстановлении соединений иттрия (NaYF4, Na₅Y₉F₃₂) ввод цинка способствует повышению его выхода в лигатуру.
- экспериментально установлены технологические режимы, обеспечивающие получение лигатур Mg-Nd, Mg-Gd, Mg-Zn-Y, Mg-Zn-Nd, Mg-Zn-Gd, магниетермическим восстановлением фторидно-хлоридных расплавов, с выходом неодима и гадолиния в лигатуру до 97 %, а при получении тройных лигатур Mg-Zn-P3M до 99,6 %.

Основные защищаемые положения:

- 1. Выход неодима и гадолиния в лигатуру на уровне 95-97%, при достижении равномерного распределения интерметаллидов в магниевой матрице, обеспечивается условиями процесса синтеза во фторидно-хлоридном расплаве KCl-NaCl-CaCl₂-MgCl₂-CaF₂-NdF₃(GdF₃) при температуре 730-740°C, и времени выдержки 30 минут при постоянном перемешивании расплава.
- 2. При вводе цинка в магниевый расплав в соотношении 2:1 создаются условия для снижения температуры и сокращения времени синтеза лигатур, при этом достигается выход P3M на уровне 97,4 –

99,6%, с образованием тройных интерметаллических соединений $Mg_xZn_yP3M_z$.

Теоретическая и практическая значимость работы. Выявлены и обоснованы температурные интервалы процесса синтеза двойных и тройных лигатур на основе магния. Разработан способ получения лигатуры магний-неодим (заявка на патент РФ №2019107240 от 13.03.2019) и магний-гадолиний магниетермическим восстановлением РЗМ из фторидно-хлоридного расплава при использовании в качестве технологической солевой смеси — солей: КСl, NaCl, CaCl₂, MgCl₂, CaF₂ и фторидов РЗМ. Разработан способ получения тройных лигатур магний-цинк-РЗМ, обеспечивающий извлечение иттрия до 98% (патенты на изобретения РФ №2675709, №2682191), гадолиния и неодима до 99,6%. Полученные теоретические и экспериментальные данные работы рекомендованы к использованию в учебных дисциплинах при подготовке бакалавров и магистров по направлению «Металлургия».

Достоверность и обоснованность научных положений и выводов обусловлена их соответствием фундаментальным закономерностям теории металлургических процессов, базовым положениям технологии производства лигатур, а также корректностью постановки и проведения экспериментальных исследований и адекватностью полученных результатов.

Апробация работы. Основные результаты диссертации докладывались и обсуждались на 56-ой международной конференции горного дела (Польша, г. Краков, Горно-металлургическая академия им. Станислава Сташица, 2015); на международной научно-практической конференции «Неделя науки - 2016» (Санкт-Петербург, СПбГТИ (ТУ), 2016); на международном форуме металлургов и горняков во Фрайбергской горной академии (Германия, г. Фрайберг, 2016); на VIII всероссийской научно-практической конференции с международным участием "Перспективы развития технологии переработки углеводородных и минеральных ресурсов" (Иркутск, ИрНИТУ, 2018); на международной конференции для молодых ученых «Химическая технология функциональных наноматериалов» (Москва, РХТУ им. Д.И. Менделеева, 2017); на международной научно-практической конференции «Химия, химическая технология и экология: Наука, производство, образование» (Махачкала, ДГУ, 2018); на IV Международной научно-практической конференции «Промышленная безопасность предприятий минерально-

сырьевого комплекса в XXI веке» (Санкт-Петербург, СПГУ, 2018); на Российской конференции молодых научных сотрудников «Физикохимия и технология неорганических материалов» (Москва, ИМЕТ РАН, 2018); на IX конференции молодых ученых по общей и неорганической химии (Москва, ИОНХ РАН, 2019); на Всероссийской научнотехнической конференции «Металловедение и современные разработки в области технологий литья, деформации и антикоррозионной защиты легких сплавов» (Москва, ФГУП «ВИАМ», 2019). Разработанные способы получения двойных и тройных магниевых лигатур с РЗМ отмечены Египетским обществом изобретателей на выставке изобретений и инноваций «Архимед — 2019».

Публикации. По теме диссертационной работы опубликовано 11 печатных трудов, в том числе, в журналах, индексируемых в международной базе данных Scopus -1, в журналах, входящих в перечень ВАК Минобрнауки России -4, получены патенты на изобретения - 2.

Личный вклад автора заключается в обосновании направления исследований; постановке целей и задач исследования; в проведении патентного поиска и анализа научно-технической литературы; выполнении лабораторных исследований; обработке и анализе результатов исследований, разработке технических решений для получения лигатур магний-неодим, магний-гадолиний, магний-цинк-неодим, магний-цинк-гадолиний, магний-цинк-истрий, формулировании защищаемых положений и выводов работы.

Автор выражает глубокую благодарность научному руководителю - проректору по научно-инновационной деятельности, д.т.н. В.Ю. Бажину, заведующему кафедрой металлургии, д.т.н. В.Н. Бричкину, начальнику отдела научно-методического обеспечения исследований центра коллективного пользования, д.х.н. В.Г. Поварову и коллективу кафедры металлургии Санкт-Петербургского горного университета, а также старшему научному сотруднику лаборатории исследований наноструктур ИХС РАН, к.т.н., В.Л. Уголкову за помощь и консультации при выполнении работы.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка литературы, включающего 124 наименования. Работа изложена на 128 страницах машинописного текста, содержит 26 таблиц и 88 рисунков.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, сформулированы цель и задачи работы, определены научная новизна и практическая значимость полученных результатов, и сформулированы основные положения, выносимые на защиту.

В первой главе на основе аналитического обзора отечественной и зарубежной литературы выполнен анализ влияния неодима, гадолиния и иттрия на свойства магниевых сплавов, установлены наиболее перспективные системы легирования с редкоземельными металлами, значительное внимание уделено системам Mg-Zn-P3M. Рассмотрены ключевые технологические направления патентной активности в области магниевых сплавов с P3M. Проанализированы способы получения лигатур на основе магния, в том числе тройных.

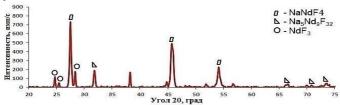
Во второй главе изучены физико-химические и технологические основы процессов получения двойных и тройных лигатур на основе магния. Выполнен анализ диаграмм состояния систем Mg-Nd, Mg-Gd, Mg-Zn, Y-Zn, Nd-Zn, Gd-Zn, Mg-Zn-Y, Mg-Zn-Nd, Mg-Zn-Gd. На основе анализа диаграмм состояния солевых смесей и требований, предъявляемых к флюсам для плавки магниевых сплавов, выбрана технологическая солевая смесь для получения лигатур на основе магния. Выполнены термодинамические расчеты металлотермического восстановления соединений фторидов РЗМ, в том числе с учетом образования интерметаллических соединений.

В третьей главе представлены и обоснованы результаты экспериментальных исследований процесса получения лигатур магнийнеодим, магний-гадолиний. Дифференциально-термическим анализом (ДТА) определены интервалы температур тепловых эффектов при плавлении компонентов солевой смеси KCl-NaCl-CaCl₂-MgCl₂-CaF₂-NdF₃(GdF₃), а также установлен фазовый состав, образованных комплексных соединений (прекурсоров). Проведены термические исследования процесса магниетермического восстановления неодима и гадолиния из технологических солевых смесей, с установлением температур экзотермических эффектов. Рассчитана энергия активации для процесса восстановления неодима и гадолиния. Выполнена оценка влияния технологических факторов на степень извлечения РЗМ при минимизации их потерь. Произведена оценка качества полученных лигатур. Представлены результаты исследования фазового состава образцов получен-

ных лигатур, а также результаты микроструктурного анализа. Выполнено технико-экономическое обоснование способа получения лигатур магний-неодим, магний-гадолиний.

В четвертой главе обсуждаются результаты экспериментальных исследований процесса получения тройных лигатур магний-цинкнеодим, магний-цинк-гадолиний, магний-цинк-иттрий. Дифференциально-термическим анализом (ДТА) определены интервалы температур тепловых эффектов при магниетермическом восстановлении РЗМ в присутствии цинка. Проведена оценка влияния технологических факторов на степень извлечения РЗМ. Проведено металлографическое исследование полученных лигатур Mg-Zn-Nd, Mg-Zn-Gd, Mg-Zn-Y.

В заключении приводится обобщение полученных результатов, выводы и рекомендации по материалам выполненных исследований и разработок.


ЗАЩИЩАЕМЫЕ ПОЛОЖЕНИЯ

1. Выход неодима и гадолиния в лигатуру на уровне 95-97%, при достижении равномерного распределения интерметаллидов в магниевой матрице, обеспечивается условиями процесса синтеза во фторидно-хлоридном расплаве KCl-NaCl-CaCl₂-MgCl₂-CaF₂-NdF₃(GdF₃) при температуре 730-740°C, и времени выдержки 30 минут при постоянном перемешивании расплава.

Проведенная термодинамическая оценка процесса магниетермического восстановления неодима и гадолиния из их фторидов, с учетом образования интерметаллических соединений ($Mg_{12}Nd$, $Mg_{41}Nd_5$, Mg_5Gd , Mg_3Gd), свидетельствует о возможности получения лигатур Mg-Nd, Mg-Gd, поскольку рассчитанные значения энергии Гиббса имеют отрицательные значение в интервале температур 300-1100 К.

На основе анализа диаграмм состояния и требований, предъявляемых к флюсам для плавки магниевых сплавов, выбрана рациональная по составу технологическая солевая смесь KCl-NaCl-CaCl₂-MgCl₂-CaF₂, где основой является комплекс солей 35KCl-35NaCl-30CaCl₂, к которому добавляется хлорид магния не более 5% от массы фторидов P3M и CaF₂ - как компонент повышающий вязкость флюса, и предотвращающий грануляцию получаемой лигатуры. Проведенный рентгенофазовый анализ полученных продуктов после плавления солевой смеси совместно с фторидами P3M показал, что при плавлении фториды неодима и гадолиния частично взаимодействуют с хлоридом натрия,

образуя комплексные соли $NaNdF_4$, $Na_5Nd_9F_{32}$ и $Na_5Gd_9F_{32}$, которые выполняют роль прекурсоров на этапе магниетермического восстановления (рисунок 1-2).

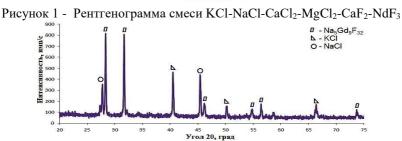


Рисунок 2 - Рентгенограмма смеси KCl-NaCl-CaCl₂-MgCl₂-CaF₂-GdF₃

Для выявления последовательности стадий синтеза лигатуры магний-неодим, магний-гадолиний, были проведены дифференциально-термические исследования (установка STA 429CD «NETZSCH») процесса восстановления неодима и гадолиния из солевой смеси выбранного состава.

На рисунке 3 показаны две термограммы, полученные при первом нагреве солевой смеси KCl-NaCl-CaCl $_2$ -MgCl $_2$ -CaF $_2$ -NdF $_3$ без магния (I) и при добавлении магния (II). Все опыты проводились с чушковым магнием марки Mr 90, квалификация исходных солей: KCl, NaCl, CaCl $_2$, MgCl $_2$ и CaF $_2$ «х.ч.», NdF $_3$, GdF $_3$ «ч».

Из анализа полученных данных установлено, что начало плавления технологической солевой смеси соответствует температуре 536,9°С, затем наблюдается эндотермический эффект с максимумом при 549,0°С, после которого зафиксирован длительный экзотермический эффект с минимумом при 605,0°С (отсутствующей при нагреве I), который соответствует процессу восстановления неодима из фторидно-хлоридного расплава. При этом, экзотермический эффект восстановле-

ния перекрывается пиком плавления магния в расплаве солей, дающий эндотермический эффект с максимумом при 666,1°C.

Рисунок 3 - Термограммы нагрева до 800°C солевой смеси без магния (I) и при добавлении магния (II)

На рисунке 4 показаны две термограммы, полученные при первом нагреве солевой смеси KCl-NaCl-CaCl₂-MgCl₂-CaF₂-GdF₃ без магния (I) и при добавлении магния (II). Установлено, что минимум экзотермического эффекта восстановления гадолиния соответствует температуре $582,0^{\circ}$ С, который, в свою очередь, перекрывается эндотермическим пиком плавления магния при $667,0^{\circ}$ С.

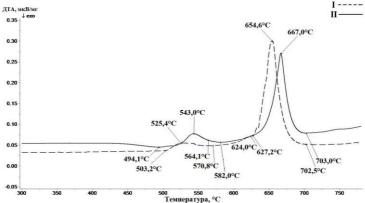


Рисунок 4 - Термограммы нагрева до 800°C солевой смеси без магния (I) и при добавлении магния (II)

Расхождения в температурах экзотермических эффектов на кривых I и II свидетельствуют о протекании реакции восстановления РЗМ из фторидно-хлоридных расплавов. Рентгенофлуоресцентный анализ полученных слитков показал в лигатуре Mg-Nd содержание 19,16 мас.% неодима, в лигатуре Mg-Gd 15,14 мас.% гадолиния.

Для определения скорости восстановления неодима и гадолиния были проведены эксперименты с изменением времени синтеза при температурах 690, 730, 800, 840°С, по результатам которых были построены зависимости выхода неодима и гадолиния в лигатуру от времени выдержки. В качестве основного оборудования для изучения синтеза магниевых лигатур была использована шахтная электропечь 1 с карбидокремниевыми нагревателями 2, температуру в печи контролировали хромель-алюмелевой термопарой 3, и корректировали при помощи терморегулятора 4. Плавки проводили при

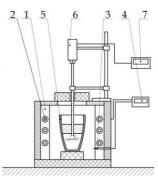
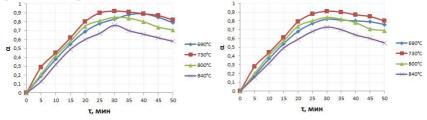



Рисунок 5 — Схема лабораторной установки

непрерывном перемешивании расплава в тигле 5 импеллером 6 (рисунок 5).

Согласно полученным экспериментальным данным (рисунок 6), восстановление неодима и гадолиния из фторидного-хлоридного расплава протекает достаточно быстро и после выдержки 30 минут содержание РЗМ в лигатуре снижается. Энергия активации, рассчитанная по уравнению Аррениуса, равна 21,87 кДж/моль для неодима и 25,12 кДж/моль для гадолиния, что соответствует кинетической области протекания процесса.

а) восстановление неодима

б) восстановление гадолиния

Рисунок 6 - Зависимость извлечения от времени выдержки

Последующие исследования проведены с применением математического планирования эксперимента с целью выбора рациональных технологических параметров синтеза. Установлены переменные факторы такие как отношение хлориды:фторид P3M; температура процесса; время выдержки; скорость перемешивания (таблица 1).

В результате обработки полученных экспериментальных данных установлено, что наибольшее влияние на степень восстановления РЗМ оказывают факторы: отношение хлориды:фторид РЗМ и время выдержки. Выявлено, что с увеличением температуры от 690 до 740°C повышается степень восстановления неодима и гадолиния.

Таблица 1 — Технологические условия и результаты синтеза лигатуры магний-неодим, магний-гадолиний

No	Хло-	T, °C	t,	Скорость	Выход	Выход
Π/Π	риды:		МИН	перемеш.,	Nd, %	Gd, %
	P3MF ₃			об/мин		
1	3:1	690	20	150	86,4	85,0
2	4:1	690	20	150	89,8	87,2
3	3:1	740	20	300	88,2	86,7
4	4:1	740	20	300	95,1	96,1
5	3:1	690	30	300	89,8	87,4
6	4:1	690	30	300	90,9	89,8
7	3:1	740	30	150	94,9	93,4
8	4:1	740	30	150	97,2	96,0
9	3:1	690	20	300	87,1	86,7
10	4:1	690	20	300	90,4	89,8
11	3:1	740	20	150	90,0	89,1
12	4:1	740	20	150	96,2	95,8
13	3:1	690	30	150	87,1	85,3
14	4:1	690	30	150	88,2	88,0
15	3:1	740	30	300	95,4	95,1
16	4:1	740	30	300	97,4	97,0

При установленных параметрах синтеза: отношение фторид P3M:хлориды=1:4, T=740°C, t=30 минут, скорость перемешивания 300 об./минуту среднее извлечение (по сумме трех плавок) неодима в лигатуру составило - 97,4%; по гадолинию - 97%. Полученные лигатуры отвечают требованиям, предъявляемым к магниевым лигатурам

(ТУ 48-4-271-91), макроструктура чушек чистая, однородная, плотная, при этом отсутствуют неметаллические включения.

На следующем этапе было определено влияние скорости перемешивания на степень извлечения РЗМ и равномерность их распределения в лигатуре. Согласно полученным результатам установлено, что при скорости перемешивания 100 об/мин достигается высокий выход РЗМ (до 97 %), при этом лигатуры характеризуются однородностью распределения РЗМ по сечению чушки.

металлографический Проведенный микроструктуры анализ (рисунок полученных слитков 7) лигатуры показал, что характеризуются равномерным распределением интерметаллических соединений (темные участки) в объеме магниевой матрицы (светлые участки). Микрорентгеноспектральным анализом структуры установлено, что при восстановлении неодима из фторидно-хлоридного расплава синтезируются интерметаллиды Mg₁₂Nd, а при восстановлении гадолиния Mg₅Gd.

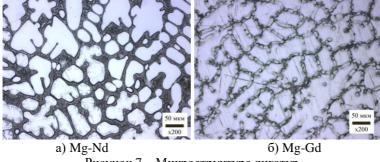


Рисунок 7 – Микроструктура лигатур

Двухфазное строение полученных лигатур Mg-Nd, Mg-Gd также было подтверждено рентгенофазовым анализом.

2. При вводе цинка в магниевый расплав в соотношении 2:1 создаются условия для снижения температуры и сокращения времени синтеза лигатур, при этом достигается выход P3M на уровне 97.4-99.6%, с образованием тройных интерметаллических соединений $Mg_xZn_yP3M_z$.

С целью снижения температуры и сокращения времени синтеза лигатур был изучен процесс магниетермического восстановления РЗМ (неодим, гадолиний, иттрий) в присутствии цинка.

Для получения тройных лигатур выбрана технологическая солевая смесь 35KCl-35NaCl-30CaCl2 и NaF-KCl-NaCl (для иттрия). Проведенный рентгенофазовый анализ солевой смеси с иттрием показал, что при плавлении фторида иттрия совместно с солевой смесью KCl-NaCl-CaCl2 или NaF-KCl-NaCl образуются комплексные соли иттрия (Na_{1.5}Y_{2.5}F₉, NaYF₄, Na₅Y₉F₃₂ и KY₇F₂₂).

Для изучения процесса магниетермического восстановления неодима, гадолиния и иттрия в присутствии цинка были проведены термические исследования систем: Mg-Zn, Mg-Zn-KCl-NaCl-CaCl₂-NdF₃, Mg-Zn-KCl-NaCl-CaCl₂-GdF₃, Mg-Zn-KCl-NaCl-CaCl₂-YF₃ и NaF-YF₃-KCl-NaCl, и определены экзотермические и эндотермические эффекты в системах. На рисунке 8 представлены термограммы, полученные при нагреве образцов: Mg-Zn, Mg-Zn-KCl-NaCl-CaCl₂-NdF₃ и Mg-Zn-KCl-NaCl-CaCl₂-GdF₃. Видно, что на кривых проявляются растянутые экзотермические эффекты в интервале температур 563-668°C, незафиксированные при плавлении магния и цинка, которые свидетельствует о протекании реакций восстановления фторида неодима и фторида гадолиния магний-цинковым расплавом.

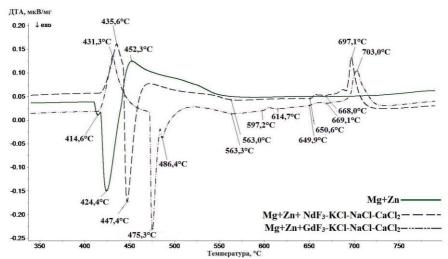
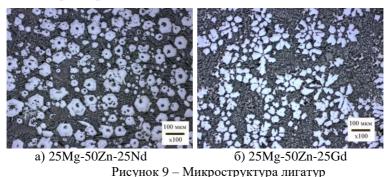


Рисунок 8 – Термограмма нагрева образцов до 800°C

Полученные данные термического анализа для систем Mg-Zn-YF₃-KCl-NaCl-CaCl₂ и Mg-Zn-YF₃-NaF-KCl-NaCl показали, что процесс восстановления иттрия проходит в интервале температур $550-630^{\circ}$ C.

Последующие эксперименты позволили определить принципиальную возможность синтеза тройных лигатур магний-цинк-РЗМ. Доказано, что отношение магния к цинку в плавках с фторидами неодима и гадолиния существенно не влияет на степень восстановления РЗМ (до 99,6%), однако этот фактор влияет на степень восстановления иттрия. Выявлено, что при отношении Mg:Zn 2:1 максимальное извлечение иттрия составляет 40,4%, а при отношении Mg:Zn 1:2 извлечение иттрия увеличивается до 97,2%. Серия плавок была проведена при постоянном отношении Mg:Zn, равное 1:2, при этом переменными факторами являлись — температура синтеза 550-700°С, время выдержки 15-30 мин и скорость перемешивания расплава 0-150 об/мин (таблица 2).

Таблица 2 – Технологические условия и результаты синтеза тройных лига-


тур магний-цинк-РЗМ

$N_{\underline{0}}$	T, °C	t,	Скорость	Выход	Выход	Выход
плавки		мин	перемеш.,	Nd, %	Gd, %	Y, %
			об/мин			
1	550	15	0	60,4	56,1	59,1
2	550	20	50	62,6	60,8	61,3
3	550	25	100	68,9	64,6	67,1
4	550	30	150	69,2	68,2	69,0
5	600	15	0	78,2	76,4	77,3
6	600	20	50	79,4	78,2	79,1
7	600	25	100	79,9	79,1	78,9
8	600	30	150	80,6	81,0	81,4
9	650	15	0	95,6	93,1	94,1
10	650	20	50	98,4	96,7	96,2
11	650	25	100	99,6	97,0	97,0
12	650	30	150	99,6	98,1	97,2
13	700	15	0	96,4	93,0	95,4
14	700	20	50	97,1	96,9	97,2
15	700	25	100	99,2	97,5	97,4
16	700	30	150	99,4	98,1	97,4

Во всех плавках основу шихты составлял более легкоплавкий компонент (цинк), который согласно диаграмме состояния системы Mg-Zn, начинает взаимодействовать с магнием при температуре 342°C, что обеспечивает начало хода экзотермической реакции восстановления P3M при более низких температурах.

Экспериментально установлено, что добавка цинка к шихте способствует снижению температуры синтеза. Степень извлечения РЗМ до 70% достигается при температуре 550° С, при этом с повышением температуры до 650° С степень извлечения РЗМ возрастает до 97-99%. В ходе экспериментов определены рациональные технологические режимы, а именно температура синтеза, равна 650° С, длительность синтеза — 20 минут, при непрерывном перемешивании со скоростью вращения импеллера 50-100 об/мин.

Микроструктурный анализ показал, что лигатуры Mg-Zn-Nd, Mg-Zn-Gd и Mg-Zn-Y характеризуются равномерным распределением тройных интерметаллических соединений $Mg_xP3M_yZn_z$ в магниевоцинковой матрице (рисунок 9).

Микрорентгеноспектральный анализ участков тройных интерметаллических соединений $Mg_xP3M_yZn_z$ показал, что они в среднем содержат до 24 мас.% P3M, 18 мас.% магния и 59,14 мас.% цинка.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований в рамках диссертационной работы разработаны и научно обоснованы технические решения для получения лигатур магний-неодим, магний-гадолиний и тройных

лигатур магний-цинк-неодим, магний-цинк-гадолиний, магний-цинк-иттрий, которые заключаются в следующих основных выводах:

- 1) Установлено, что при плавлении солевой смеси KCl-NaCl-CaCl₂-MgCl₂-CaF₂, с фторидом неодима и гадолиния, образуются комплексные соединения NaNdF₄, Na₅Nd₉F₃₂, Na₅Gd₉F₃₂, являющиеся прекурсорами при синтезе магниевых лигатур.
- 2) В результате дифференциально-термического анализа определены интервалы температур тепловых эффектов при плавлении компонентов солевой смеси KCl-NaCl-CaCl $_2$ -MgCl $_2$ -CaF $_2$ -NdF $_3$ (GdF $_3$), а также при проведении процесса магнийтермического восстановления РЗМ из солевой смеси. Зафиксированы экзотермические эффекты восстановления в диапазоне температур от 582 до 623,7°C.
- 3) С учетом расчета констант скорости реакций при температурах 690, 740, 800, 840°С были определены значения энергии активации, равные 21,87 кДж/моль для неодима и 25,12 кДж/моль для гадолиния, соответствующие кинетической области протекания процесса.
- 4) Разработан способ получения лигатуры магний-неодим (заявка на патент РФ №2019107240 от 13.03.2019) и магний-гадолиний магниетермическим восстановлением РЗМ из фторидно-хлоридного расплава при использовании в качестве технологической солевой смеси солей: КСl, NaCl, CaCl₂, MgCl₂, CaF₂. Установлено, что при температуре на стадии синтеза магниевой лигатуры от 730 до 740°С затрачивается минимальное время (до 30 минут), при этом обеспечиваются благоприятные условия для работы перемешивающих устройств, скорость вращения которых должна составлять не менее 100 об/мин. При сохранении необходимых технологических параметров обеспечивается выход неодима и гадолиния в лигатуру от 95 до 97%.
- 5) Полученные образцы лигатур соответствуют ТУ-48-4-271-91 по допустимым примесям. Изломы чушек лигатуры характеризуются однородностью, плотностью, отсутствием неметаллических включений. Микроструктура лигатур характеризуется равномерным распределением интерметаллических соединений в объеме магниевой матрицы.
- 6) Установлено, что при плавлении фторида иттрия совместно с солевой смесью KCl-NaCl-CaCl $_2$ или NaF-YF $_3$ -KCl-NaCl образуются комплексные соли (Na $_{1.5}$ Y $_{2.5}$ F $_9$, NaYF $_4$, Na $_5$ Y $_9$ F $_{32}$ и KY $_7$ F $_{22}$), которые на этапе восстановления являются прекурсорами.

- 7) В результате дифференциально-термического анализа (ДТА) определены интервалы температур тепловых эффектов при проведении процесса магнийтермического восстановления РЗМ из солевой смеси в присутствии цинка. Установлены экзотермические эффекты восстановления в диапазоне температур от 475 до 630,7°C.
- 8) Доказано, что при синтезе тройных лигатур Mg-Zn-P3M рациональное отношение магния к цинку составляет 1:2, при котором достигается снижение температуры синтеза (до 650 °C) и сокращение времени синтеза (до 20 минут) тройных лигатур при восстановлении P3M из технологической солевой смеси KCl-NaCl-CaCl₂. Процесс магниетермического восстановления при добавлении цинка характеризуется высоким извлечением неодима (до 99,4%), гадолиния (до 98,1%) и иттрия (до 97,4%).
- 9) Разработаны способы получения тройных лигатур магний-цинк-иттрий (патенты на изобретения РФ №2675709, №2682191), магний-цинк-неодим, магний-цинк-гадолиний магнийтермическим восстановлением РЗМ в присутствии цинка из хлоридно-фторидного расплава при использовании в качестве технологической солевой смеси солей: KCl-NaCl-CaCl2 и NaF-KCl-NaCl (при восстановлении иттрия). Микроструктура лигатур характеризуется равномерным распределением интерметаллических соединений ($Mg_xY_yZn_z$) в объеме магниево-цинковой матрицы.
- 10) В результате экономической оценки себестоимости процесса и цен на лигатуры установлено, что лигатура Mg-35Nd, полученная по способу магниетермического восстановления, имеет себестоимость ниже в среднем на 436 тыс. рублей с тонны, а лигатура Mg-30Gd на 493 тыс. руб. с тонны, чем магниевые лигатуры с P3M, полученные способом прямого сплавления.

Основные результаты диссертации опубликованы в следующих наиболее значимых работах:

- 1. **Савченков С.А.** Синтез магниевых лигатур во фторидно-хлоридных расплавах / С.А. Савченков, В.Ю. Бажин // Вестник Иркутского государственного технического университета. 2018. Т.22. №5. С. 214-224.
- 2. Савченков С.А. Получение лигатур магний-цинкредкоземельный металл в расплаве солей / С.А. Савченков,

- В.Л. Уголков // Вестник Иркутского государственного технического университета. 2019. Т.23. N21. С. 187-196.
- 3. **Савченков С.А.** Технологические особенности синтеза лигатур магний-неодим / С.А. Савченков, В.Ю. Бажин, В.Н. Бричкин, Я.И. Косов, В.Л. Уголков // Металлург. 2019. №4. С. 71-77.
- 4. **Савченков С.А.** Исследование процесса получения лигатуры магний-гадолиний методом металлотермического восстановления // Пветные металлы. 2019. №5. С. 33-39.
- 5. **Савченков С.А.** Термические исследования процесса получения магниевых лигатур с иттрием и цинком / С.А. Савченков, В.Ю. Бажин, В.Н. Бричкин, В.Л. Уголков // Расплавы. 2019. №3. С. 207-218.
- 6. Савченков С.А. Синтез лигатур на основе магния // XV Российская конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов». Сборник трудов конференции. Москва, ИМЕТ РАН 16-19 октября 2018. Москва, 2018. С. 438-439.
- 7. **Савченков С.А.** Магниевые лигатуры с редкоземельными металлами. Технология получения. Перспективы применения / С.А. Савченков, В.Ю. Бажин, В.Л. Уголков // IX Конференция молодых ученых по общей и неорганической химии. Тезисы докладов. Москва, ИОНХ РАН 9-12 апреля 2019. Москва, 2019. С. 114-115.
- 8. Савченков С.А. Исследование процесса получения двойных и тройных лигатур на основе магния / С.А. Савченков, В.Ю. Бажин, В.Л. Уголков // Всероссийская научно-техническая конференция «Металловедение и современные разработки в области технологий литья, деформации и антикоррозионной защиты легких сплавов» Материалконференции. Москва, ФГУП «ВИАМ» 12 апреля 2019. Москва, 2019. С. 179-192.
- 9. Пат. 2675709 РФ Способ получения лигатуры магний-цинкиттрий / Сизяков В.М., **Савченков С.А.**, Бажин В.Ю., Бричкин В.Н., Поваров В.Г. 20181106234; заявл. 19.02.2018; опубл. 24.12.2018, коррекция опубл. 23.04.2019, Бюл. № 12. -7 с.
- 10. Пат. 2682191 РФ Лигатура для жаропрочных магниевых сплавов / Савченков С.А., Бажин В.Ю., Бричкин В.Н. 2018119096; заявл. 23.05.2018; опубл. 15.03.2019, Бюл. № 8. 5 с.