Сугайло Ивана Юрьевна

РОЛЬ ТПР КАНАЛОВ В ФОРМИРОВАНИИ КЛИНИКО-ФУНКЦИОНАЛЬНЫХ ОСОБЕННОСТЕЙ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

3.1.29. Пульмонология (медицинские науки)

Автореферат диссертации на соискание ученой степени кандидата медицинских наук Работа выполнена в Федеральном государственном бюджетном научном учреждении «Дальневосточный научный центр физиологии и патологии дыхания»

Научный руководитель: академик РАН, доктор медицинских наук, профессор Колосов Виктор Павлович

Официальные оппоненты:

Черняк Борис Анатольевич, доктор медицинских наук, профессор, кафедра клинической аллергологии и пульмонологии, профессор Иркутской государственной медицинской академии последипломного учреждения дополнительного профессионального образования «Российская медицинская академия непрерывного профессионального образования» Министерства здравоохранения Российской Федерации

Кулик Екатерина Геннадьевна, кандидат медицинских наук, доцент кафедры факультетской и поликлинической терапии Федерального государственного бюджетного образовательного учреждения высшего образования «Амурская государственная медицинская академия» Министерства здравоохранения Российской Федерации

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Защита состоится 22 декабря 2022 г. в 9:00 ч. на заседании объединенного диссертационного совета 99.0.062.02 на базе Федерального государственного бюджетного научного учреждения «Дальневосточный научный центр физиологии и патологии дыхания», Федерального государственного бюджетного общеобразовательного учреждения высшего образования «Амурская государственная медицинская академия» Министерства здравоохранения Российской Федерации по адресу: 675006, г. Благовещенск, ул. Горького, 95

С диссертацией можно ознакомиться в библиотеке и на сайте Федерального государственного бюджетного научного учреждения «Дальневосточный научный центр физиологии и патологии дыхания» http:// cfpd.ru

Автореферат	разослан	«	>>	 2022 г.

Учёный секретарь диссертационного совета

Приходько Анна Григорьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Хроническая обструктивная болезнь легких (ХОБЛ) является прогрессирующим заболеванием дыхательной системы, от которого, по данным Всемирной организации здравоохранения, умерло 3,23 млн человек в 2019 году. ХОБЛ является гетерогенным по патогенезу заболеванием, в развитие которого существенный вклад вносят табакокурение и воздействие аэрополлютантов. Однако не у всех курильщиков развивается ХОБЛ (С. Fletcher et al., 1977; В. Lundbäck et al., 2003; S.S. Salvi et al., 2009).

Несомненным фактором риска является генетическая предрасположенность и, как следствие, дисфункция иммунных клеток с формированием хронического воспалительного процесса. Центральным звеном патогенеза ХОБЛ являются макрофаги, взаимодействующие с сигаретным дымом и пылевыми частицами посредством специфической активации каналов с транзиторным рецепторным потенциалом (TRP), и играющие ключевую роль в реализации иммунного ответа (A. Dietrich et al., 2019; M. Xiong et al., 2020).

В этом аспекте наибольший интерес представляют каналы TRPA1, TRPV1, TRPV4 и TRPM8. В последние годы представлены убедительные результаты, свидетельствующие о неотъемлемой роли данных TRP рецепторов в патогенезе ХОБЛ. Агонист TRPA1 (циннамальдегид (CA)), подавляя активность транскрипционного ядерного фактора (NF) kB в макрофагах, ингибирует продукцию индуцибельной синтазы оксида азота (iNOS) (P. Chen et al., 2020 г.). Блокирование TRPV1 в эксперименте с воздействием пылевых частиц на дыхательные пути снижало гиперреактивность бронхов, воспалительную клеточную инфильтрацию, секрецию цитокинов и фосфорилирование NFkB (M. Xu et al., 2019). Активация TRPV4 увеличивает продукцию активных форм кислорода. Также этот канал может играть существенную роль в мукоцилиарной дисфункции, увеличивает проницаемость эндотелия и альвеолярного эпителия, способствуя отеку легочной ткани и инфильтрации воспалительными клетками (M.S. Grace et al., 2014). При активации TRPM8 сигаретным дымом и угольной золой

на эпителиальных клетках бронхиального эпителия происходит повышенная секреция муцинов, различных цитокинов (IL-1 α , IL-1 β , IL-4, IL-6, IL-8, IL-13, фактор некроза опухоли (TNF) - α) и фосфорилирование NFkB (J. Wang et al., 2019). Для всех каналов, кроме TRPA1, установлены однонуклеотидные полиморфизмы (ОНП), связанные с ХОБЛ (H. Xing et al., 2008; G. Zhu et al., 2009; M. Xiong et al., 2020).

Мозаичность имеющейся информации относительно роли TRP каналов в развитии XOБЛ обуславливает необходимость ее более детального изучения.

Степень разработанности исследования

На основе имеющихся в литературе данных сформировано представление о роли TRP рецепторов в патогенезе ХОБЛ. В рамках диссертационного исследования изучены экспериментальные работы, рассматривающие возможное влияние генетических вариантов, а также особенностей экспрессии TRPA1, TRPV1, TRPV4, TRPM8 каналов на макрофагах в формировании ХОБЛ и прогрессировании бронхиальной обструкции. По результатам проведенного анализа, в настоящее время комплексные исследования роли TRP рецепторов в формировании ХОБЛ и прогрессировании бронхиальной обструкции отсутствуют.

Цель исследования - изучить эффекты полиморфизмов генов и особенностей экспрессии катионных каналов TRP у больных ХОБЛ с целью поиска новых биомаркеров заболевания, характеризующих его клиническое течение и прогноз.

Задачи исследования

- 1. Изучить значимость генотипов и аллельных вариантов *TRPA1*, *TRPV1*, *TRPV4*, *TRPM8* в качестве биомаркеров формирования ХОБЛ у курящих лиц.
- 2. Определить значимость генотипов и аллельных вариантов *TRPA1*, *TRPV1*, *TRPV4*, *TRPM8* в качестве биомаркеров прогрессирования бронхиальной обструкции у больных ХОБЛ.
- 3. Установить взаимосвязь между уровнями экспрессии каналов TRPA1, TRPV1, TRPV4 и TRPM8, гуморальными маркерами бронхиального воспаления и клинико-функциональными особенностями ХОБЛ.

4. На основании полученных данных разработать способы прогнозирования формирования ХОБЛ у курящих лиц и прогрессирования бронхиальной обструкции с учетом выявленных молекулярно-генетических биомаркеров, клинических и функциональных предикторов.

Научная новизна

Впервые определена роль полиморфизмов гена *TRPM8* в качестве биомаркеров формирования ХОБЛ среди курильщиков, а также прогрессирования бронхиальной обструкции у лиц, страдающих данным заболеванием. В частности, установлено, что генотипы СС и GG по полиморфизму rs2052030 гена *TRPM8* увеличивают риск развития ХОБЛ, а носительство аллеля С по полиморфизму rs11562975 гена *TRPM8* ассоциировано с предрасположенностью к прогрессирующей бронхиальной обструкции при ХОБЛ.

Впервые изучены особенности экспрессии каналов TRP на макрофагах больных ХОБЛ и установлено преобладание экспрессии канала TRPV1, по сравнению с макрофагами курильщиков без признаков бронхиальной обструкции. Кроме того, получены данные, свидетельствующие о повышенной экспрессии канала TRPV4 на альвеолярных макрофагах пациентов ХОБЛ с прогрессирующей бронхиальной обструкцией, а также указывающие на взаимосвязь TRPV4 с увеличением продукции воспалительных медиаторов в респираторном тракте больных лиц.

Впервые разработаны способы прогнозирования формирования ХОБЛ у курящих лиц и прогрессирования бронхиальной обструкции, использующие математический аппарат биномиальной логистической регрессии и учитывающие молекулярно-генетические биомаркеры и клинико-функциональные предикторы.

Теоретическая и практическая значимость работы

Получены новые данные о влиянии полиморфизмов генов TRP каналов на формирование ХОБЛ у курящих лиц и прогрессирование бронхиальной обструкции, что обосновывает их использование в качестве биомаркеров заболевания. Выявленные особенности экспрессии TRP каналов на макрофагах боль-

ных ХОБЛ, а также их взаимосвязь с выраженностью воспалительной реакции и клинико-функциональными характеристиками, позволяют говорить о вероятном участии данных белков в патогенезе заболевания и рассматривать их в качестве фармакологических мишеней при разработке новых подходов к терапии.

Разработан и внедрен в практику пульмонологического отделения Федерального государственного бюджетного научного учреждения «Дальневосточный научный центр физиологии и патологии дыхания» (ДНЦ ФПД) способ прогнозирования риска формирования ХОБЛ среди курящих лиц, учитывающий данные о генотипе по полиморфизму гѕ2052030 гена *ТRPM8* в комплексе с возрастом и индексом курения (патент на изобретение №2767923 от 06.08.2021 г.). Предложен способ прогнозирования прогрессирующей бронхиальной обструкции у пациентов с ХОБЛ на основании информации о носительстве С аллеля по полиморфизму гѕ11562975 гена *TRPM8*, частоте обострений заболевания, результата оценочного теста ХОБЛ и степени нарушения вентиляционной функции легких (заявка на выдачу патента на изобретение №2022119286 от 14.07.2022 г.).

Методология и методы исследования

Работа выполнена в соответствии с принципами Хельсинкской декларации «Этические принципы проведения медицинских исследований с участием людей в качестве субъектов исследования» с поправками 2013 г. и нормативными документами «Правила надлежащей клинической практики в Российской Федерации», утвержденными Приказом №200н от 01.04.2016 МЗ РФ. Предметом исследования стало изучение роли TRP рецепторов в формировании клинико-функциональных особенностей ХОБЛ. Настоящее исследование представляет собой самостоятельный фрагмент темы государственного задания ДНЦ ФПД №062 «Новые молекулярные и клеточные механизмы патогенеза регистрации: 4A-A19хронической обструктивной болезни» $(N_{\underline{0}})$ гос. 119011590166-4), выполненный на базе ДНЦ ФПД. Объектом исследования явились 238 человек: 134 больных ХОБЛ (средней, тяжелой и крайне тяжелой степени тяжести) и 104 курящих человека без признаков бронхиальной обструкции. Применялись общеклинические, функциональные, культуральные, молекулярно-генетические, иммунофлуоресцентные и статистические методы исследования. Все пациенты дали письменное согласие на участие в исследовании в соответствии с протоколом №133-Д/1 от 28.11.2019 г., одобренным локальным Комитетом по биомедицинской этике ДНЦ ФПД.

Положения, выносимые на защиту

- 1. Генотипы СС и GG по полиморфизму rs2052030 гена *TRPM8* являются биомаркерами формирования ХОБЛ среди курильщиков.
- 2. С аллель по полиморфизму rs11562975 гена *TRPM8* является биомаркером прогрессирования бронхиальной обструкции у больных XOБЛ.
- 3. Больные ХОБЛ характеризуются увеличенной экспрессией канала TRPV1 на макрофагах.
- 4. Повышенная экспрессия TRPV4 на альвеолярных макрофагах больных ХОБЛ взаимосвязана с наличием прогрессирующей бронхиальной обструкции, а также сопутствующим увеличением продукции медиаторов воспаления.
- 5. Разработанные способы, учитывающие молекулярно-генетические и клинико-функциональные биомаркеры, позволяют прогнозировать формирование ХОБЛ и прогрессирование бронхиальной обструкции при данном заболевании.

Степень достоверности полученных результатов

Степень достоверности результатов научной работы подтверждается проведением всех этапов работы с учетом рекомендаций для медицинских и биологических исследований, достаточным объемом материала, репрезентативностью выборки, применением современных методов исследования, использованием сертифицированного оборудования, реактивов и лицензионных статистических программ. Для статистической обработки использовались прикладные программы Statistica 12.0 (StatSoft, Inc. 2014), NCSS 12 (StatSoft, Inc., 2018), REST 2009 V2.0.13 (Qiagen GmbH, 2009). Анализ данных производился с помощью параметрических и непараметрических методов вариационной статистики с проверкой нормальности распределения значений переменных. Различия считались достоверными при р<0,05. Выводы соответствуют поставленным

задачам, получены благодаря комплексному анализу данных.

Публикации результатов научного исследования

По материалам исследования опубликовано 9 печатных работ в ведущих рецензируемых научных журналах, в том числе входящих в 1 квартиль международной реферативной базы Web of Science, из них 5 - в журналах, рекомендованных Высшей аттестационной комиссией Министерства образования и науки РФ, в том числе патент на изобретение.

Личный вклад соискателя

Автором диссертационного исследования самостоятельно проведен поиск и анализ современных литературных данных по теме, сформулированы цель и задачи научной работы. Соискатель принимала непосредственное участие в отборе и обследовании пациентов для включения в исследование, сборе и обработке материала пациентов для молекулярно-генетических и иммунофлуоресцентных исследований. Самостоятельно выполнила работы по клеточному культивированию, методики определения уровней цитокинов и TRP рецепторов, провела генотипирование полиморфизмов и анализ экспрессии, а также составила базу данных и осуществила статистические расчеты, результаты которых отражены в выводах и представлены в виде публикаций и докладов.

Объем и структура работы

Диссертация изложена на 145 страницах машинописного текста, включает в себя 17 таблиц, 24 рисунка, 2 формулы для расчета данных, 240 источников литературы отечественных и зарубежных авторов.

Содержит: введение, 6 глав, включающих обзор литературы, материалы и методы исследования, а также четыре главы собственных исследований, заключение, выводы, практические рекомендации и список литературы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

На базе ДНЦ ФПД проведено комплексное обследование 134 больных ХОБЛ (основная группа) и 104 курящих лиц (контрольная группа) в период с 2019 по 2021 гг. Критерии включения в основную группу: наличие подтвержденного диагноза ХОБЛ вне обострения (согласно классификации степени тяжести Глобальной инициативы по ХОБЛ (GOLD) II, III, IV) согласно Международной классификации болезней 10 пересмотра (МКБ-10), GOLD (пересмотр 2017, 2021 гг.); Федеральных клинических рекомендаций по диагностике и лечению ХОБЛ Российского респираторного общества (2021 г.); возраст старше 35 лет, независимо от пола; наличие подписанного информированного согласия. Критерии исключения: сопутствующие заболевания легких; сопутствующие системные заболевания, кроме патологии сердечно-сосудистой системы; аллергозы и аллергическая предрасположенность, отказ от участия в исследовании. В группу контроля были включены курящие лица без признаков бронхильной обструкции (ОФВ₁/ФЖЕЛ>70%).

Для определения выраженности симптомов использовался оценочный тест ХОБЛ (СОРО Assessment Test (САТ)). Оценка функции внешнего дыхания проводилась методом спирографии на аппарате Easy on-PC (nddMedizintechnik AG, Швейцария) исходно и в динамике после проведения бронходилатационной пробы с ингаляцией 200 мкг короткодействующего β_2 -агониста сальбутамола. Спустя 1 год пациентам проводили повторную оценку функции внешнего дыхания и, используя в качестве критерия прогрессирования бронхиальной обструкции снижение постбронходилатационного объема форсированного выдоха за 1 секунду (ОФВ₁₆) на 50 и более мл в год, распределили пациентов в 2 группы: группа без прогрессирования бронхиальной обструкции (n=75) и группа с прогрессированием бронхиальной обструкции (n=59). У всех пациентов производили забор периферической венозной крови для выделения дезоксирибонуклеиновой кислоты (ДНК) из лейкоцитов и последующего генетического анализа.

Определение полиморфизмов генов TRPA1, TRPV1, TRPV4, TRPM8 проводили методом асимметричной LATE (Linear-After-the-Exponential) полимеразной цепной реакции (ПЦР) с анализом плавления зондов «molecular beacon». В качестве материала для анализа экспрессии генов TRPA1, TRPV1, TRPV4, TRPM8 использовали макрофаги, полученные из моноцитов периферической крови восьми больных ХОБЛ и шести человек из контрольной группы. Исследование экспрессии генов на уровне матричной рибонуклеиновой кислоты (мРНК) проводили методом ПЦР в реальном времени в присутствии интеркалирующего красителя EvaGreen (Синтол, Россия). Анализ уровней экспрессии генов проводили в программном обеспечении REST 2009 V2.0.13 (Qiagen GmbH, 2009). Исследование экспрессии на уровне белка TRPA1, TRPV1, TRPV4, TRPM8 каналов проводили с помощью окрашивания клеточного осадка мокроты (39 больных ХОБЛ и 8 лиц контрольной группы) специфическими антителами и анализа экспрессии на проточном цитофлуориметре FACS Canto II (Becton Dickinson, США), уровень экспрессии выражали в виде процента положительно окрашенных клеток или нормализованной медианной интенсивности флуоресценции (nMFI). Концентрации цитокинов и факторов ремоделирования определяли в супернатанте культуральной среды макрофагов, дифференцированных из моноцитов периферической крови, и супернатанте мокроты с помонаборами мультиплексного анализа коммерческими LEGENDplex ЩЬЮ (BioLegend, США) на проточном цитофлуориметре FACS Canto II (Becton Dickinson, США). Статистическую обработку полученных данных производили с помощью программного обеспечения Statistica 12.0 (StatSoft, Inc., 2014) и NCSS 12 (StatSoft, Inc., 2018). В процессе анализа результатов исследования использовались параметрические (для данных с нормальным распределением) и непараметрические (для данных с распределением, отличным от нормального) статистические методы. В качестве критического уровня значимости α принималось значение 0,05.

Сравнительная характеристика основной и контрольной групп, а также групп больных ХОБЛ с наличием и отсутствием прогрессирующей бронхиаль-

ной обструкции представлены в таблицах 1 и 2 соответственно.

Таблица 1 – Сравнительная характеристика основной и контрольной групп

Показатель	Основная группа	Контрольная группа	Значимость (р)
	(n=134)	(n=104)	
Возраст, лет	60,9±0,6	43,2±1,3	<0,001
Пол, м/ж (%)	86/14	74/26	0,05
ИК, пачка-лет	40[26;47]	15[7;21]	<0,001
ИК>20пачка/лет,%	91	34	<0,001
$O\Phi B_{16}$,% от долж.	49,2±1,5	108,5±1,6	<0,001
ОФВ _{1б} /ФЖЕЛ _б ,%	47,2±1,2	80,0±1,0	<0,001

Таблица 2 – Сравнительная характеристика групп пациентов с ХОБЛ

Показатель	Группа пациентов	Группа пациентов	Значимость
	с прогрессирова-	без прогрессиро-	(p)
	нием бронхиаль-	вания бронхиаль-	
	ной обструкции	ной обструкции	
	(n=59)	(n=75)	
Возраст, лет	62,2±0,97	59,6±0,99	0,05
Пол, м/ж (%)	88/12	84/16	0,02
ИК, пачка-лет	40±2,3	33,6±1,5	<0,05
GOLD II, n (%)	14 (23,7%)	39 (52%)	
GOLD III, n (%)	32 (54,3%)	25 (33,3%)	0,004
GOLD IV, n (%)	13 (22,0%)	11 (14,7%)	
$O\Phi B_{16}(1$ явка), % от долж.	45,7±2,6	56,1±2,5	<0,001
$O\Phi B_{16}$ (2явка),% от долж.	36,1±2,2	55,0±2,2	<0,001
$O\Phi B_{16}/\Phi ЖЕЛ6(1явка), %$	47,3±2,6	53,9±2,5	<0,001
$O\Phi B_{16}/\Phi ЖЕЛ6(2явка), %$	42,7±2,2	52,8±2,2	<0,001

В группе с прогрессирующей бронхиальной обструкцией по сравнению с группой без прогрессирования бронхиальной обструкции баллы САТ были выше в 2,5 раза (28[10;36] баллов против 11[8;33] баллов, р<0,001), обострения случались чаще (61% против 24%, р<0,001), преобладала тяжелая и очень тяжелая степень одышки по mMRC (52,6% против 22,6%, р<0,05) и большая часть пациентов относилась к категории D по GOLD (61% против 24%, р<0,001).

Результаты собственных исследований

1. Общая характеристика исследованных полиморфизмов

В процессе исследования у 238 человек из основной и контрольной групп был проанализирован 21 полиморфизм генов *TRPA1*, *TRPM8*, *TRPV1*, *TRPV4*, предположительно вносящих вклад в формирование ХОБЛ и прогрессирование бронхиальной обструкции. Частоты генотипов для исследованных ОНП находились в равновесии Харди-Вайнберга и не отличались от ожидаемых (р>0,05).

2. Взаимосвязь исследованных полиморфизмов с вентиляционной функцией легких и формированием хронической обструктивной болезни легких у курящих лиц

При анализе основной и контрольной групп с ХОБЛ оказался ассоциирован полиморфизм *TRPM8* rs2052030. Гетерозиготы CG rs2052030 гена *TRPM8* достоверно реже встречались среди больных ХОБЛ по сравнению с гомозиготными носителями CC и GG, которые преобладали в подгруппе больных лиц: 52,4% против 32,8%, p=0,008 (рисунок 1).

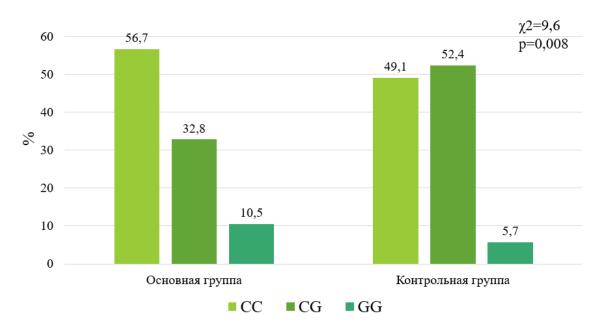


Рисунок 1 — Частота встречаемости генотипов полиморфизма rs2052030 гена *TRPM8* в основной и контрольной группах.

При анализе в сверхдоминантной модели (CG против CC+GG) ассоциация оставалась значимой после коррекции на пол, возраст и анамнез курения (скорректированное отношение шансов (ОШ) 0,59 95% доверительный интервал (ДИ) (0,41; 0,86), p=0,006).

ОНП *TRPM8* rs11562975 был проанализирован в доминантной модели наследования (GG против GC+CC), ввиду редкой встречаемости гомозиготных носителей С аллеля. Было установлено, что носители аллеля С в гетеро- и гомозиготном состоянии отличались более низкими значениями спирометрических показателей. Однако отличия были статистически значимыми только для ОФВ₁/ФЖЕЛ исходно и на фоне действия бронхолитика (рисунок 2).

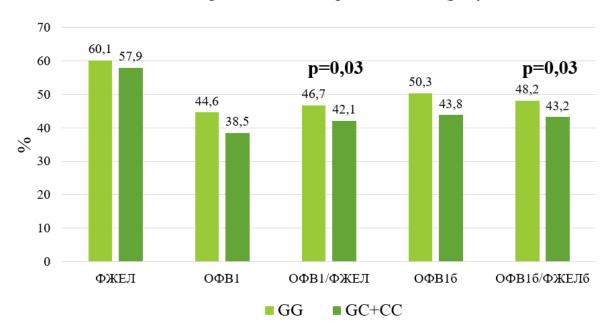


Рисунок 2 — Влияние полиморфизма rs11562975 *TRPM8* на функцию легких у больных ХОБЛ.

Носительство аллеля С (генотипы GC и CC) по полиморфизму TRPM8 rs11562975 было достоверно ассоциировано со значениями ОФВ₁₆<60% в доминантной (рисунок 3) и мультипликативной модели и демонстрировало тенденции к соответствующей взаимосвязи в общей модели наследования. В доминантной модели ассоциация оставалась значимой после коррекции на пол, возраст и анамнез курения (скорректированное ОШ 2,17 95%ДИ (1,13; 4,19), p=0,02).

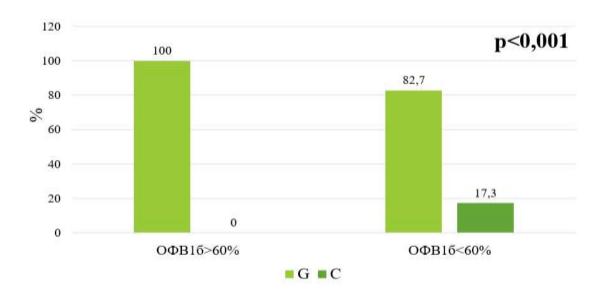


Рисунок 3 - Ассоциация полиморфизма *TRPM8* rs11562975 с $O\Phi B_{16} < 60\%$ у больных XOБЛ.

При анализе влияния носительства генотипов полиморфизма *TRPA1* rs7819749 на функцию легких, наиболее низкие значения спирометрических параметров были характерны для носителей генотипа TT, наиболее высокие – для генотипа GG, гетерозиготы GT занимали промежуточное положение (рисунок 4).

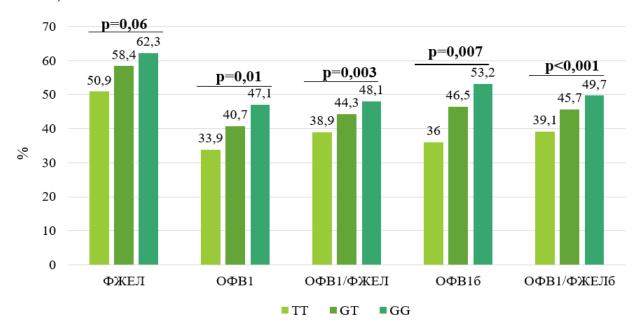


Рисунок 4 — Влияние полиморфизма *TRPA1* rs7819749 на функцию легких у больных ХОБЛ.

Примечание: значимость показана при сравнении носителей генотипов TT и GG.

Аналогичная взаимосвязь со степенью нарушений вентиляционной функции легких была установлена для полиморфизма *TRPA1* rs959974. Очевидно, что носители генотипа TT по полиморфизму rs959974 имели наиболее высокие значения бронхиальной проходимости, для гетерозиготных больных были характерны промежуточные значения, а для гомозигот GG нарушения вентиляционной функции легких были выражены в наибольшей степени. Статистически значимые различия были отмечены исключительно при сравнении спирометрических параметров между носителями TT и GG генотипов.

3. Влияние полиморфизма rs11562975 гена TRPM8 на прогрессирование бронхиальной обструкции у больных хронической обструктивной болезнью легких

У пациентов с прогрессирующей бронхиальной обструкцией преобладает носительство С аллеля (в составе генотипов GC и CC) по ОНП *TRPM8* гs11562975 (рисунок 5). Среди больных группы с прогрессированием ХОБЛ частота носительства генотипов GC и CC составляла 35%, что было выше, по сравнению с пациентами группы без прогрессирования бронхиальной обструкции (11%, p=0,02). Ассоциация оставалась значимой после коррекции на пол, возраст, анамнез курения и ОФВ₁₆ в логистической регрессионной модели (скорректированное ОШ 1,71 95%ДИ (1,02;2,83), p=0,04).

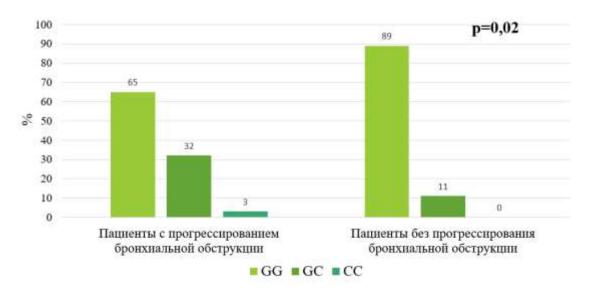


Рисунок 5 — Эффект полиморфизма rs11562975 гена *TRPM8* на прогрессирование бронхиальной обструкции у больных ХОБЛ.

Носители аллеля C (генотипы GC+CC) отличались более существенным снижением $O\Phi B_{16}$ в течение года по сравнению с больными, имевшими генотип GG: -0.12[-0.34;-0.03] л против -0.02[-0.13;0.04] л, p=0.002 (рисунок 6).

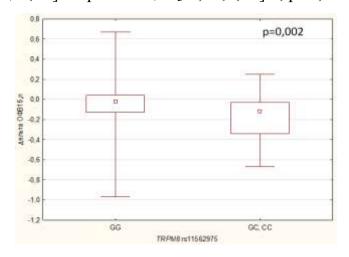


Рисунок 6 — Снижение О ΦB_{16} (в литрах) в течение года у носителей G и C аллелей rs11562975 гена *TRPM8*.

4. Особенности экспрессии TRP на макрофагах, дифференцированных из моноцитов периферической крови

Больные ХОБЛ отличались систематически более высокой экспрессией мРНК гена *TRPV1*. Данные различия были значимы при сравнении контрольных М0 макрофагов (p=0,009) и макрофагов, стимулированных IL-4 (p=0,01). Экспрессия *TRPM8* была также увеличена у больных ХОБЛ, однако различия не достигали статистической значимости (рисунок 7).

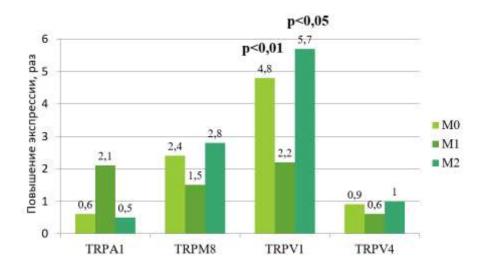


Рисунок 7 — Различия в экспрессии генов TRP на уровне мРНК в макрофагах больных XOБЛ по сравнению с макрофагами здоровых лиц.

5. Особенности экспрессии TRP на макрофагах мокроты

У больных ХОБЛ наблюдали достоверное увеличение экспрессии белка TRPV1 (как по проценту положительных клеток, так и по значению nMFI), а также некоторое снижение TRPA1, которое не было статистически значимым (рисунок 8).

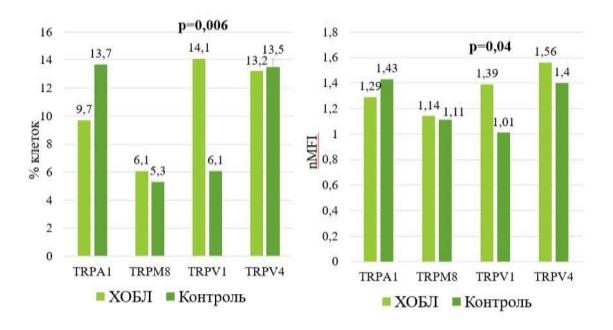


Рисунок 8 — Экспрессия белка каналов TRP в макрофагах мокроты больных XOБЛ и лиц контрольной группы.

Экспрессия TRPA1 и TRPM8 имела прямую корреляцию с некоторыми показателями бронхиальной проходимости (таблица 3). Так, ОФВ₁/ФЖЕЛ коррелировал с TRPA1 и TRPM8. Вторым показателем, взаимосвязанным с экспрессией данных TRP, был COC_{25-75} , его корреляции с TRPA1 и TRPM8 также были значимы.

Таблица 3 – Корреляция экспрессии TRPA1 и TRPM8 в макрофагах с показателями спирометрии у больных XOБЛ

Показатель	TRPM8	TRPA1
ОФВ1/ФЖЕЛ	ρ=0,32 (p=0,04)	ρ=0,36 (p=0,02)
COC ₂₅₋₇₅	ρ=0,35 (p=0,03)	ρ=0,37 (p=0,02)

6. Особенности экспрессии TRP каналов у больных с прогрессированием бронхиальной обструкции

В группе с прогрессированием обструкции уровень экспрессии TRPV4 был достоверно выше по сравнению с группой без прогрессирования обструкции 14,1% против 7,5%, соответственно (p=0,004). В отношении других каналов подобных закономерностей не выявлено (рисунок 9).

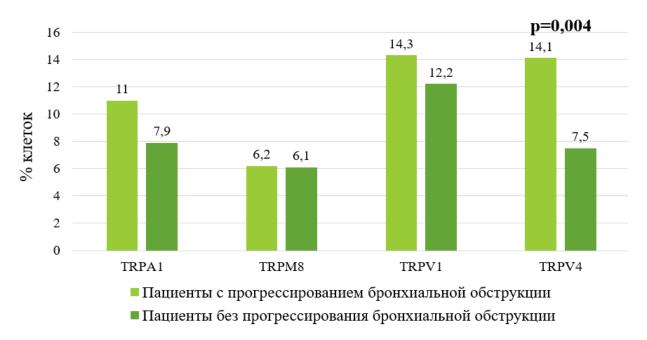


Рисунок 9 — Процентное соотношение макрофагов, экспрессирующих каналы TRP в образцах мокроты больных с наличием и отсутствием прогрессирования бронхиальной обструкции.

7. Особенности воспалительного ответа макрофагов in vitro и его взаимосвязь с экспрессией TRP каналов

Взаимоотношения исходной экспрессии TRPM8 с продукцией цитокинов под действием LPS/IFN-γ характеризовались отрицательной корреляцией с интерлейкином (IL)-4, хемокиновым лигандом 10 с мотивом СХС (СХСL10), IL-1β, трансформирующим фактором роста (ТGF) -β1. Для TRPA1 выявлялась прямая взаимосвязь с реакцией TNF-α и IL-17а. TRPV4 демонстрировал прямую корреляцию с IL-12р70 и обратную с TGF-β1, для TRPV1 корреляции с цитокинами под действием LPS/IFN-γ не выявлено (рисунок 10).

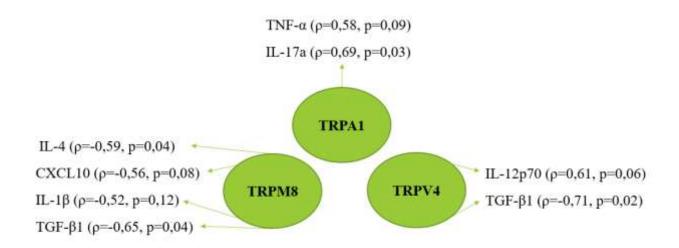


Рисунок 10 – Корреляции экспрессии TRP с продукцией цитокинов под действием LPS/IFN-γ.

Поляризация в присутствии IL-4 сопровождалась появлением обратной корреляции TRPM8 с IL-2 и IL-17a, TRPA1 – с IL-12p70 и IL-8, TRPV1 – с IL-17a и IL-12p70, а TRPV4 – с IL-2, IL-17a, IL-6, а также CXCL10 (рисунок 11).

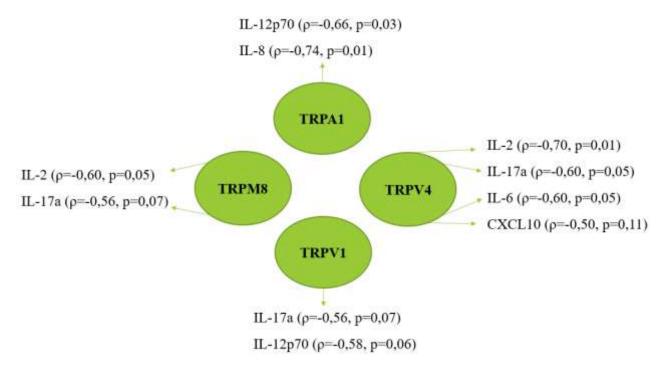


Рисунок 11 — Корреляции экспрессии TRP с продукцией цитокинов под действием IL-4.

8. Особенности воспалительного ответа макрофагов in vivo и его взаимосвязь с экспрессией TRP каналов

Наибольшее число корреляционных взаимосвязей с концентрацией цитокинов и факторов ремоделирования было обнаружено для канала TRPV4. Его экспрессия была взаимосвязана с уровнями IL-4, CXCL10, хемотаксического белка моноцитов (MCP)-1, TGF-β1, эпидермального фактора роста (EGF). Дополнительно, для TRPV1 была найдена взаимосвязь с TNF-α и тканевым ингибитором металлопротеиназы (TIMP)-1, для TRPM8 – с IL-8 (рисунок 12).

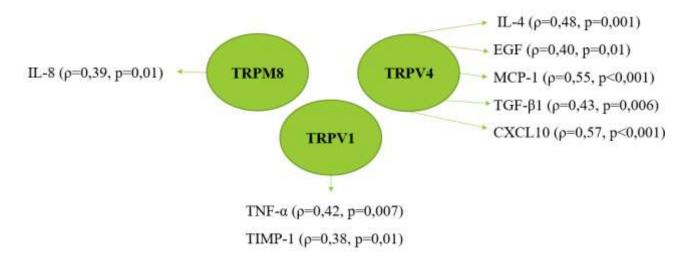


Рисунок 12 — Взаимосвязь концентрации цитокинов и факторов ремоделирования с каналами TRP.

9. Способ прогнозирования риска формирования хронической обструктивной болезни легких среди курящих лиц

С учетом найденных особенностей и закономерностей с целью прогнозирования риска формирования ХОБЛ среди курящих лиц при помощи биномиальной логистической регрессии была разработана математическая модель, отражающая зависимость вероятности формирования ХОБЛ от ОНП rs2052030 гена *TRPM8*, возраста пациента и индекса курения.

Разработанное уравнение имеет вид:

$$F = -6,22738 + 0,3746 \times OH\Pi + 0,10491 \times BO3P + 0,03958 \times ИК,$$
 (1) где $OH\Pi$ – переменная, отражающая генотип по полиморфизму rs2052030

гена *TRPM8* и принимающая значение 0 при генотипе CG и 1 – в случае генотипов CC или GG; BO3P – переменная, отражающая возраст в годах; ИК – переменная, отражающая индекс курения (пачка-лет). Вычисление вероятности (Р) формирования ХОБЛ производится по формуле:

$$P = 1 / (1 + e^{-F}), (2)$$

где е – основание натурального логарифма, равное 2,718; F – значение, полученное вычислением по формуле, приведенной выше.

Полученную вероятность сравнивают с граничным значением 0,65. При $P\ge0,65$ прогнозируют высокий риск формирования ХОБЛ, а при P<0,65 — низкий риск развития заболевания. По данным ROC-анализа значение площади под кривой AUC составило 0,88 95%ДИ (0,82;0,91), p<0,001. Рассчитаны такие прогностические характеристики, как чувствительность — 78%, специфичность — 83%, точность — 80%.

10. Способ прогнозирования прогрессирующей бронхиальной об-

На основании проведенного анализа получены данные о существенном влиянии С аллеля ОНП rs11562975 гена TRPM8 на прогрессирование бронхиальной обструкции у пациентов с ХОБЛ. В результате исследования выявлены четыре переменные, способные оказать влияние на прогрессирование бронхиальной обструкции у больных ХОБЛ: генотип по ОНП rs11562975 гена TRPM8, ОФВ16, (% от должного), частота обострений (ЧО), значение САТ в баллах.

Методом биномиальной логистической регрессии установлено взаимовлияние вышеупомянутых параметров на прогрессирование бронхиальной обструкции и определены коэффициенты для данных переменных.

Вид разработанного прогностического уравнения:

$$F=-5,20318+0,89733\times rs11562975+0,05320\times O\Phi B_{16}+0,67048\times YO+0,15464\times CAT,$$
 (3)

где rs11562975 — переменная, принимающая значение «1» при генотипе GC или CC по ОНП rs11562975 гена TRPM8, «0» - при генотипе GG; $O\Phi B_{16}$ — количественная переменная, отражающая постбронходилатационный объем форсированного выдоха за 1 секунду, выражаемая в процентах от должного;

4O — переменная, принимающая значение «1» у пациентов с частыми обострениями, «0» - с редкими обострениями; CAT — результат теста оценки ХОБЛ, выраженный в баллах.

Вычисление вероятности прогрессирования бронхиальной обструкции производится по формуле (2). Для полученной вероятности Р определено граничное значение, равное 0,71. В случае, если Р больше 0,71, риск прогрессирования ХОБЛ считается высоким, если меньше 0,71 – низким. По данным ROC-анализа значение площади под кривой AUC составило 0,81 95%ДИ (0,72;0,87), р<0,05). Рассчитаны такие прогностические характеристики, как чувствительность 76%, специфичность 80%, точность 75%.

выводы

- 1. Гомозиготные генотипы по полиморфизму rs2052030 гена TRPM8 увеличивают вероятность формирования ХОБЛ у курящих лиц, тогда как СG генотип является протективным в отношении развития заболевания.
- 2. Больные ХОБЛ, имеющие генотипы GC или CC по полиморфизму rs11562975 гена TRPM8, находятся в группе риска по прогрессированию бронхиальной обструкции; величина ежегодного снижения $O\Phi B_1$ у данных пациентов значимо больше, по сравнению с носителями генотипа GG.
- 3. Закономерности экспрессии TRP каналов на макрофагах, дифференцированных *in vitro* из моноцитов периферической крови в присутствии GM-CSF, и альвеолярных макрофагах больных ХОБЛ схожи. При этом, в сравнении с контрольной группой, отмечается достоверное увеличение экспрессии канала TRPV1.
- 4. Канал TRPV4 характеризуется повышенной экспрессией у больных ХОБЛ с прогрессирующей бронхиальной обструкцией, а также взаимосвязан с концентрациями IL-4, MCP-1, CXCL10, EGF и TGF-β1, что может свидетельствовать о его участии в процессах ремоделирования дыхательных путей при данном заболевании.
- 5. Больные ХОБЛ отличаются более выраженной воспалительной реакцией в респираторном тракте, о чем можно судить по повышенным уровням IL-

- 1β, IL-4, IL-6, IL-8, IL-10, CXCL10, IL-12р70 и МСР-1. Наличие прогрессирующей бронхиальной обструкции сопровождается еще большим увеличением продукции данных цитокинов, наряду с IL-2, IFN-γ и TGF-β1.
- 6. Использование комплекса биомаркеров, включая генотип по полиморфизму rs2052030 гена TRPM8, возраст и индекс курения, в составе разработанной математической модели позволяет прогнозировать риск формирования XOБЛ среди курящих лиц.
- 7. Разработанный способ, одновременно учитывающий генотип по полиморфизму rs11562975 гена TRPM8, частоту обострений, выраженность симптомов согласно тесту CAT и значение $O\Phi B_{16}$, позволяет прогнозировать наличие прогрессирующей бронхиальной обструкции у пациентов с XOEJ.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. В качестве биомаркера предрасположенности к ХОБЛ у курильщиков рекомендуется использовать ОНП rs2052030 гена *TRPM8*.
- 2. С целью повышения точности прогнозирования риска формирования XOБЛ среди курящих лиц предлагается использовать разработанное регрессионное уравнение:

$$F = -6,22738 + 0,3746 \times OH\Pi + 0,10491 \times BO3P + 0,03958 \times HK, \tag{1}$$

где ОНП – переменная, отражающая генотип по полиморфизму rs2052030 гена *TRPM8* и принимающая значение 0 при генотипе CG и 1 – в случае генотипов CC или GG; ВОЗР – переменная, отражающая возраст в годах; ИК – переменная, отражающая индекс курения (пачка-лет);

рассчитывают вероятность (Р) формирования ХОБЛ по формуле:

$$P = 1 / (1 + e^{-F}),$$
 (2)

где е – основание натурального логарифма, равное 2,718; F – значение, полученное вычислением по формуле, приведенной выше.

Полученную вероятность сравнивают с граничным значением 0,65. При $P \ge 0,65$ прогнозируют высокий риск формирования ХОБЛ, а при P < 0,65 — низкий риск развития заболевания.

3. В качестве биомаркера прогрессирующей бронхиальной обструкции у

больных ХОБЛ рекомендуется использовать ОНП rs11562975 гена TRPM8.

4. Для повышения точности прогнозирования прогрессирования бронхиальной обструкции рекомендовано использовать разработанное регрессионное уравнение:

F=-5,20318+0,89733×rs11562975+0,05320×OФВ $_{16}$ +0,67048×ЧО+0,15464×САТ, (3) где rs11562975 — переменная, принимающая значение «1» при генотипе GC и CC по ОНП rs11562975 TRPM8, «0» - при генотипе GG; ОФВ $_{16}$ — количественная переменная, отражающая постбронходилатационный объем форсированного выдоха за 1 секунду, выражаемая в процентах от должного; ЧО — переменная, принимающая значение «1» у пациентов с частыми обострениями, «0» - с редкими обострениями; САТ — тест оценки ХОБЛ, выраженный в баллах.

Вычисление вероятности прогрессирования бронхиальной обструкции производится по формуле:

$$P=1/(1+e^{-F}),$$
 (2)

где е – основание натурального логарифма (2,718); F – значение, полученное вычислением по формуле.

Для полученной вероятности Р определено граничное значение, равное 0,71. В случае, если Р больше 0,71, риск прогрессирования ХОБЛ считается высоким, если меньше 0,71 – низким.

СПИСОК ПЕЧАТНЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Сугайло, И.Ю.** Современные представления о роли каналов с транзиторным рецепторным потенциалом в патогенезе хронической обструктивной болезни легких (обзор литературы) / И.Ю. Сугайло, Д.Е. Наумов // Бюллетень физиологии и патологии дыхания. 2019. Вып.74. С.119-130.
- 2. **Сугайло, И.Ю.** Особенности экспрессии каналов TRPV1, TRPV4, TRPM8 и TRPA1 в макрофагах, полученных из моноцитов больных хронической обструктивной болезнью легких / И.Ю. Сугайло, О.О. Котова, Д.А. Гассан [и др.] // Бюллетень физиологии и патологии дыхания. 2020. Вып.78. С.31-39.
- 3. Гассан, Д.А. Сравнительная характеристика условий выделения моноцитов методом адгезии для экспериментов in vitro / Д.А. Гассан, Д.Е. Наумов, **И.Ю. Сугайло** [и др.] // Бюллетень физиологии и патологии дыхания. 2020. Вып.78. С.128-134.
- 4. Naumov, D. Role of *TRPM8* polymorphisms in predisposition to COPD development in smokers / D. Naumov, O. Kotova, **I. Sugaylo** [et al.] // European Respiratory Journal. 2020. Vol.56, suppl.64. 1128.
- 5. Naumov, D. Effect of *TRPA1* and *TRPM8* polymorphisms on lung function in COPD / D. Naumov, D. Gassan, **I. Sugaylo** [et al.] // European Respiratory Journal. 2020. Vol.56, suppl.64. 1129.
- 6. Naumov, D.E. Effect of *TRPM8* and *TRPA1* polymorphisms on COPD predisposition and lung function in COPD patients / D.E. Naumov, O.O. Kotova, **I.Y. Sugaylo** [et al.] // J. Pers. Med. 2021. Vol.11, suppl. 2. 108. https://doi.org/10.3390/jpm11020108.
- 7. Naumov, D.E. Peculiarities of TRPM8 and TRPA1 expression in macrophages under M1- and M2-polarization. / D.E. Naumov, **I.Y. Sugaylo**, O.O. Kotova [et al.] // Am. J. Respir. Crit. Care Med. 2021. Vol.203. A4404.
- 8. Naumov, D. Differential response of monocyte-derived macrophages from COPD and healthy subjects to LPS/IFNγ stimulation. / D. Naumov, **I. Sugaylo**, D. Gassan [et al.] // European Respiratory Journal. 2021. Vol.58, suppl.65. PA688.
- 9. Способ прогнозирования риска формирования хронической обструктивной

болезни легких среди курящих лиц. / Д.Е. Наумов, Д.А. Гассан, **И.Ю. Сугайло** [и др.] // Патент на изобретение №2767923 от 06.08.2021г.

СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ

ДИ – доверительный интервал

ИК – индекс курения

мРНК – матричная рибонуклеиновая кислота

ОНП – однонуклеотидный полиморфизм

 $O\Phi B_{16}$ — объем форсированного выдоха за первую секунду на фоне дей-

ствия бронхолитика

ОШ – отношение шансов

ПЦР – полимеразная цепная реакция

ФЖЕЛ – форсированная жизненная емкость легких

ХОБЛ – хроническая обструктивная болезнь легких

CAT – COPD Assessment Test, оценочный тест по ХОБЛ

CXCL10 – C-X-C motif chemokine ligand 10, хемокиновый лиганд 10 с мо-

тивом СХС

IFN-γ – interferon-gamma, интерферон-гамма

GOLD – Global initiative for chronic obstructive lung disease, Глобальная

инициатива по хронической обструктивной болезни легких

LPS – lipopolysaccharides, липополисахариды

MCP-1 – Monocyte Chemoattractant Protein 1, хемотаксический белок мо-

ноцитов 1

nMFI – normalized median fluorescence intensity, нормализованная меди-

анная интенсивность флуоресценции

TNF-α – tumor necrosis factor alpha, фактор некроза опухоли альфа

ТGFβ-1 – transforming growth factor beta 1, трансформирующий фактор ро-

ста бета 1

TRP – transient receptor potential channel, канал с транзиторным рецеп-

торным потенциалом