

ШУБА Андрей Витальевич

РАЗМЕРНЫЕ ЭФФЕКТЫ В ФАЗОВЫХ ПЕРЕХОДАХ И ФИЗИЧЕСКИХ СВОЙСТВАХ НЕОДНОРОДНЫХ ФЕРРОИКОВ

Специальность 1.3.8. Физика конденсированного состояния

АВТОРЕФЕРАТ

диссертации на соискание учёной степени доктора физико-математических наук

Работа выполнена в ФГКВОУ ВО «Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) МО РФ

Научный консультант Нечаев Владимир Николаевич,

доктор физико-математических наук,

профессор

Сигов Александр Сергеевич, Официальные оппоненты:

> доктор физико-математических наук, профессор, академик РАН, ФГБОУ ВО «МИРЭА – Российский технологический университет»,

президент;

Тополов Виталий Юрьевич,

доктор физико-математических наук, профессор, ФГАОУ ВО «Южный федеральный университет», физический факультет, профессор;

Даринский Борис Михайлович,

доктор физико-математических наук, профессор, ФГБОУ ВО «Воронежский государственный университет», кафедра материаловедения и индустрии

наносистем, профессор

Ведущая организация ФГБОУ ВО «Тверской государственный

университет»

Защита состоится «05» апреля 2022 г. в $14^{\frac{00}{2}}$ часов в конференц-зале на заседании диссертационного совета 24.2.286.01, созданного на базе ФГБОУ ВО «Воронежский государственный технический университет», по адресу: г. Воронеж, Московский проспект, д. 14, ауд. 216.

С диссертацией можно ознакомиться в научно-технической библиотеке и на сайте ФГБОУ ВО «Воронежский государственный технический университет» https://cchgeu.ru.

Автореферат разослан «28» января 2022 г.

Учёный секретарь

лиссертационного совета Стогней Олег Владимирович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последнее десятилетие исследования низкоразмерных систем на основе сегнетоэлектриков, сегнетоэластиков, ферромагнетиков интенсивно развиваются учёными и инженерами в связи с обозначившейся возможностью управления физическими свойствами таких неоднородных материалов. Свойства последних существенно отличаются от свойств однородных кристаллов в связи с ограниченным размером, формой и геометрией ферроиков, присутствием поверхности раздела, различной природой пограничных компонентов и их объемным соотношением, наличием собственных полей рассеяния. С этими факторами связаны наблюдаемые на практике аномальные явления в наноразмерных ферроиках: значительное уменьшение параметра порядка вплоть до исчезновения в образце низкосимметричной фазы [1], существенный сдвиг температуры фазового перехода (ФП) [2], аномальный отклик системы на внешнее воздействие [3], размытие ФП по температуре в многофазных системах, таких как матричные композиты или сегнетоэлектрические релаксоры (СР) [4]. В самой точке ФП способен изменяться характер поведения термодинамических характеристик в зависимости от размерности ограниченной системы. Другой возможной причиной таких аномалий при ФП может служить вероятное присутствие между симметричной и несимметричной фазой температурной области с неоднородными доменоподобными состояниями. Комплексное исследование перечисленных особенностей позволит значительно расширить возможности практического использования неоднородных систем на основе ферроиков в различных областях техники: микроэлектронике - в устройствах хранения информации [5, 6], спинтронике – в магнитных сенсорах, спиновых нанотранзисторах [6], радиофизике - в устройствах СВЧ и антеннах [7], биомедицине - в устройствах диагностики и лечения заболеваний [8] и других областях.

Практическое получение наноразмерных образцов с определенными физическими свойствами для их дальнейшего исследования является непростой экспериментальной задачей. Вместе с тем бурное развитие быстродействующей вычислительной техники даёт широкие возможности для проведения моделирования и компьютерных экспериментов по изучению наноразмерных структур без существенных материальных затрат. Поэтому теоретическое изучение характерных свойств наноматериалов с упорядоченными магнитными или электрическими структурами помогает выявить и объяснить ряд аномальных явлений, наблюдаемых в эксперименте. Помимо чисто прикладного применения эти исследования имеют и фундаментальное значение, поскольку непосредственно относятся к актуальнейшей и нерешённой до конца проблеме физики конденсированного состояния — проблеме ФП в сильно неупорядоченных системах. Последовательная теория ФП в мезо-, наноразмерных системах также обязательно должна учитывать существенно неоднородное распределение параметра порядка по объёму всей системы, характер

контакта параметра порядка с пограничной фазой и действие собственных полей рассеяния. Решение подобных задач возможно методом молекулярной динамики. Но, с одной стороны, для проведения расчетов с достаточно большим числом частиц требуются серьезные вычислительные мощности, с другой — не ясны пределы применимости этих результатов и вытекающие отсюда слабые предсказательные возможности таких модельных представлений.

Цель работы — исследование особенностей ФП в системах неоднородных наноферроиков, СР с учетом собственных полей рассеяния на основе феноменологической теории фазовых переходов Ландау—Гинзбурга с применением численно-аналитических методов для решения систем дифференциальных уравнений в частных производных.

В соответствии с целью работы решались следующие задачи:

- 1. Разработка методик расчета температуры ФП в наноферроиках и нахождение температурных интервалов существования низкосимметричных фаз в зависимости от размера и формы исследуемых образцов, типа взаимодействия параметра порядка с внешней средой.
- 2. Исследование основных термодинамических характеристик наноферроиков в зависимости от размеров ферроиков и типа закрепления параметра порядка на их границах.
- 3. Установление влияния размерных эффектов на собственные частоты поляризационных колебаний и времена релаксации поляризации в тонких сегнетоэлектрических пленках (СЭП).
- 4. Определение вклада неоднородных индуцируемых электрических полей структуры ферромагнетик-пьезоэлектрик в смещение резонансных частот и величину магнитоэлектрического (МЭ) отклика.
- 5. Определение условий существования неоднородных поляризованных состояний вблизи температуры ФП в тонких СЭП.
- 6. Исследование механизмов переключения поляризации в тонких СЭП во внешнем электрическом поле.
- 7. Нахождение температуры ФП и ширины температурной области его размытия в тонкой пленке СР в зависимости от параметров пленки и статистических характеристик ее структурной неоднородности.

Научная новизна исследований:

1. Детально исследованы закономерности поведения температуры ФП, термодинамические характеристики (свободная энергия, теплоёмкость, восприимчивость) наноферроиков (0D, 1D, 2D, 3D), а также многослойных структур и гранулированных композитов сегнетоэлектрик-диэлектрик в зависимости от размеров ингредиентов, направления полярной оси, приложения внешнего поля, типа закрепления параметра порядка на границе ферроиков. Предложен механизм, объясняющий повышение температуры ФП в гранулированном композите сегнетоэлектрик-диэлектрик. Установлена зависимость периода полосовой доменной структуры от толщины и ширины тонкой СЭП.

- 2. Разработана методика расчета температуры структурного ФП в тонких пленках ферроиков в достаточно слабом внешнем электрическом поле и определено смещение температуры ФП в СЭП.
- 3. Численно-аналитически рассчитаны спектры собственных частот и разрешенных времен релаксации поляризации в тонких СЭП в зависимости от толщины и типа закрепления параметра порядка на границе пленки.
- 4. Численно-аналитически найдены форма и критический размер зародыша обратного домена (ЗОД) в достаточно слабом внешнем электрическом поле при неоднородном переключении поляризации в тонкой СЭП в зависимости от ее толщины и граничных условий. Определены условия смены механизма переключения поляризации с неоднородного на однородный. В рамках кинетической теории Зельдовича найдена средняя скорость неоднородной переполяризации как функция толщины СЭП, напряженности внешнего электрического поля и граничных условий.
- 5. Определена температурная область существования неоднородных поляризованных состояний, возникающих в тонких СЭП при их охлаждении из парафазы.
- 6. Обнаружено смещение резонансных частот МЭ эффекта в двухслойной структуре ферромагнетик-пьезоэлектрик при точном учете неоднородности индуцируемого электрического поля по ее толщине. Предложен метод оценки максимальной величины коэффициента МЭ связи при учете диссипативных свойств материалов.
- 7. Определены температура ФП и ширина температурной области его размытия в тонкой пленке СР как функции ее толщины и свойств поверхности в зависимости от статистических характеристик структурной неоднородности пленки.

Все перечисленные результаты получены впервые.

Теоретическая и практическая значимость работы.

В рамках феноменологической теории Ландау численно-аналитически решен класс задач о $\Phi\Pi$ в сильно неупорядоченных системах на основе ферроиков разной размерности (0D, 1D, 2D, 3D) и определены особенности $\Phi\Pi$ в зависимости от параметров неоднородных объектов. Полученные в диссертации результаты позволяют выявить роль размерных эффектов и способствуют более глубокому пониманию процессов, происходящих в слоистых и гранулированных композитах на основе мезо- и наноразмерных ферроиков. Для большей части поставленных в работе задач получены аналитические решения в виде итоговых формул, которые анализируются численно, что дает возможность оценить погрешность и установить область применимости результатов, найденных численно или с помощью различных приближений, заложенных в самой постановке подобных задач.

Построенные модели и приведенные методы решения могут быть использованы для прогнозирования либо интерпретации экспериментальных данных о физических свойствах аналогичных систем вблизи точки ФП путем

варьирования соответствующих параметров в найденном решении. Полученные данные о критических размерах ферроиков можно использовать для определения минимально допустимых толщин СЭП, ферромагнитных пленок, их многослойных структур, размеров пор и гранул в композиционных материалах. Результаты работы могут быть использованы в прогнозировании ширины температурного интервала размытия физических свойств СР.

Основные положения и результаты, выносимые на защиту:

- 1. Вклад размерного и граничного факторов, собственных полей рассеяния и внешнего поля в положение температуры $\Phi\Pi$ и поведение термодинамических характеристик (восприимчивости, теплоемкости, свободной энергии) наноферроиков (0D, 1D, 2D, 3D) в окрестности точки $\Phi\Pi$.
- 2. Смещение температуры $\Phi\Pi$ в тонких СЭП в достаточно слабом внешнем электрическом поле, сопровождающее естественное размытие $\Phi\Pi$ во внешних полях, зависящее от материала СЭП, ее толщины, граничных условий, направления полярной оси.
- 3. Размер и форма ЗОД, способного расти в достаточно слабом внешнем электрическом поле при неоднородном переключении поляризации в тонкой СЭП в зависимости от ее толщины и типа граничных условий.
- 4. Условия возникновения и ширина температурного интервала существования неоднородных поляризационных состояний в СЭП.
- 5. Частоты электромеханического резонанса в двухслойной структуре ферромагнетик-пьезоэлектрик с точным учетом индуцируемых электрических полей по ее толщине в зависимости от длины и толщины слоев.
- 6. Оценки температуры $\Phi\Pi$ и ширины температурной области его размытия в тонкой пленке CP как функции ее толщины и свойств поверхности в зависимости от статистических характеристик неоднородности структуры.

Личный вклад автора. Автор принимал непосредственное участие в постановке задач и разработке методов их решения. Вклад автора в выполнение аналитических и численных расчетов, в анализ полученных результатов и подготовку публикаций по проведенным исследованиям является определяющим.

Достоверность результатов работы подтверждается корректной математической постановкой задач, использованием известных апробированных методик расчета, согласованием полученных результатов с общими представлениями, экспериментальными данными и результатами численного моделирования, полученными для сходных физических систем.

Апробация работы. Основные результаты диссертационной работы были представлены на следующих научных конференциях и семинарах: II, III, VI Международных семинарах «Компьютерное моделирование электромагнитных процессов в физических, химических и технических системах» (Воронеж, 2003, 2004, 2012); I–XIV, XVIII, XXI Международных семинарах «Физико-математическое моделирование систем» (Воронеж, 2004–2015, 2017, 2019); XXI–XXIV Международных конференциях «Релаксационные явления в твёрдых телах» (Воронеж, 2004, 2010, 2015, 2019); V, VII Международной

конференции и Всероссийской школе-конференции «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Воронеж, 2004, 2009); IV-IX Международных семинарах по физике сегнетоэластиков (Воронеж, 2003, 2006, 2009, 2012, 2015, 2018); XVIII, XIX Всероссийских конференциях по физике сегнетоэлектриков» (Санкт-Петербург, 2008, Москва, 2011); IV Международной научной конференции «Современные проблемы прикладной математики, теории управления и математического моделирования» (Воронеж, 2011); VI, X, XII Международных конференциях «Современные проблемы прикладной математики, теории управления и компьютерных технологий» (Воронеж 2013, 2017, 2019); XI Российской ежегодной конференции молодых научных сотрудников и аспирантов «Физикотехнология неорганических материалов» (Москва, II Российско-Китайском семинаре по диэлектрикам и сегнетоэлектрикам (Boронеж, 2015); VI, VIII Международных конференциях «Деформация и разрушение материалов и наноматериалов» (Москва, 2015, 2019); IV-VI Междисциплинарных научных форумах с международным участием «Новые материалы и перспективные технологии» (Москва, 2018–2020); І Всероссийской конференции «Актуальные проблемы математики и информационных технологий» (Махачкала, 2020); Международной онлайн-конференции «Исследование сегнетоэлектрических материалов российскими учеными. Столетие открытия сегнетоэлектричества» (Екатеринбург, 2020).

Публикации. По теме диссертации опубликовано 128 научных работ, из них 32 работы в международных и российских журналах, индексируемых в международных базах Web of Science, Scopus или включенных в перечень ВАК РФ, в том числе 1 монография.

Полный перечень публикаций представлен в списке литературы диссертации.

Структура и объём работы. Диссертация состоит из введения, восьми глав, заключения и списка литературы из 279 наименований. Работа изложена на 392 страницах и содержит 167 рисунков и 1 таблицу.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулированы цели и основные задачи исследования, изложена научная новизна диссертации, отражены теоретическая и практическая значимость работы, сформулированы основные положения, выносимые на защиту, представлены сведения о структуре, объеме и апробации диссертации.

<u>В первой главе</u> рассмотрены особенности фазового перехода ($\Phi\Pi$) в полуограниченных образцах ферроиков, исследованы их термодинамические свойства (свободная энергия, теплоемкость, восприимчивость). Представленный в главе материал основан в основном на литературных данных, допол-

ненных расчетами автора, являющимися необходимыми для создания всесторонней и максимально полной картины ФП в ограниченных ферроиках.

<u>В параграфе 1.1</u> рассматривается объемный ферроик, занимающий полупространство $z \ge 0$ и претерпевающий ФП второго рода со свободной энергией

$$F(\eta) = \int_{V} \left(-\frac{\alpha}{2} \eta^2 + \frac{\beta}{4} \eta^4 + \frac{\kappa}{2} (\nabla \eta)^2 \right) dV + \int_{S} \frac{\alpha_s}{2} \eta^2 dS, \tag{1}$$

где $\alpha = \alpha_0 (T_C - T)$, β — коэффициенты в разложении свободной энергии вблизи температуры Кюри T_C объёмного образца; $\kappa \simeq a^2$ — корреляционная постоянная, где a — межатомное расстояние; α_s — коэффициент, принимающий как положительные, так и отрицательные значения. Варьируя функционал (1), получаем краевую задачу

$$-\kappa \frac{d^2 \eta}{dz^2} - \alpha \eta + \beta \eta^3 = 0; \tag{2}$$

$$\kappa \frac{d\eta}{dz} - \alpha_s \eta \bigg|_{z=0} = 0; \qquad \frac{d\eta}{dz} \bigg|_{z=\infty} = 0 \tag{3}$$

с решением

$$\eta(z) = \eta_{\infty} \frac{(\eta_{\infty} + \eta_0) e^{\frac{z}{\delta}} - (\eta_{\infty} - \eta_0) e^{-\frac{z}{\delta}}}{(\eta_{\infty} + \eta_0) e^{\frac{z}{\delta}} + (\eta_{\infty} - \eta_0) e^{-\frac{z}{\delta}}},$$
(4)

из которого следует, что величина параметра порядка изменяется от значения $\eta_{\infty} = \sqrt{\alpha/\beta}\;$ в объеме материала до значения $\eta_0\;$ на его границе. Из выражения (4) найдена температурная зависимость $\eta_0(T)\;$ на поверхности ферроика

$$\eta_0(T) = \eta_\infty \left(\sqrt{1 + \frac{\alpha_s^2}{2\kappa\alpha}} - \frac{\alpha_s}{\sqrt{2\kappa\alpha}} \right)$$

и проведен анализ влияния знака коэффициента α_s на физические свойства образца вблизи температуры $\Phi\Pi$.

Из условия минимума свободной энергии определен вклад поверхности в термодинамические характеристики образца. Вклад в обобщенную восприимчивость материала

$$\chi(T) = \left(\frac{d^2 \Delta F}{d\eta_{\infty}^2}\right)^{-1} = \left(\frac{\sqrt{2\kappa\alpha}}{3} \frac{\eta_0^3}{\eta_{\infty}^3} + \alpha_s \frac{\eta_0^2}{\eta_{\infty}^2} - \sqrt{2\kappa\alpha} \frac{\eta_0}{\eta_{\infty}} + \frac{2\sqrt{2\kappa\alpha}}{3}\right)^{-1}$$

имеет расходимость при температуре $T=T_C$, но закон Кюри-Вейса здесь не выполняется — для материалов с поверхностным $\Phi\Pi$ ($\alpha_s < 0$) расходимость более слабая — $\chi(T) \sim |T_C - T|^{-1/2}$, чем для материалов без поверхностного

ФП $(\alpha_s > 0) - \chi(T) \sim |T_C - T|^{-2}$. На расстоянии L от поверхности при температурах $|T - T_C| < \alpha_s^2 / (L\sqrt{\kappa}\alpha_0^2)$ ее вклад в теплоемкость может превышать скачок теплоемкости $\Delta c_p = \alpha_0^2 T_C / (2\beta)$, связанный с ФП в объеме образца.

В случае $\alpha_s>0$ параметр порядка η_0 на поверхности вблизи $\eta_0\simeq\eta_\infty\sqrt{2\kappa\alpha}$ / $\left(2\alpha_s\right)$ и вдали $\eta_0\simeq\eta_\infty-\eta_\infty\alpha_s$ / $\sqrt{2\kappa\alpha}$ от температуры T_C меньше объемного значения η_∞ и при приближении к температуре T_C стремится к нулю по закону более быстрому — $\eta_0\left(T\right)\sim\left|T-T_C\right|$, чем в объеме материала — $\eta_\infty\left(T\right)\sim\left|T-T_C\right|^{1/2}$.

В случае $\alpha_s < 0$ ФП начинается на поверхности материала при температуре $T_s = T_C + \alpha_s^2 / (\alpha_0 \kappa)$ и при удалении вглубь образца параметр порядка η уменьшается от величины $\eta_0 = \eta_\infty + |\alpha_s| \sqrt{2/(\kappa\beta)}$ до объемного значения η_∞ . При охлаждении материала глубина проникновения δ^* параметра порядка внутрь образца растет по закону $\delta^* \sim (T-T_C)^{-1/2}$ и захватывает весь объем тела при температуре $T = T_C$. Вклад поверхности в теплоемкость не зависит от величины параметра α_s и носит универсальный характер:

$$c_p = \frac{T\sqrt{\alpha_0^3 \kappa}}{2\beta\sqrt{T - T_C}}.$$

При температуре $T=T_s$ восприимчивость системы расходится по закону

$$\chi(T) = \frac{1}{\sqrt{2\alpha_0\kappa(T-T_s) + \alpha_s^2 + \alpha_s}},$$

а теплоемкость испытывает скачок

$$\Delta c_p = \frac{T_s \sqrt{\alpha_0^3 \kappa}}{2\beta \sqrt{T_s - T_C}}.$$

В параграфе 1.2 излагаются результаты работ [9, 10], устанавливающих возможность существования ФП второго рода в неоднородное пространственно-модулированное состояние на поверхности полубесконечного кристалла при учете стрикционной связи параметра порядка с деформациями решетки. Такое поверхностное состояние приводит к возникновению неоднородных упругих напряжений на границе, уменьшающихся до нуля по мере удаления от нее вглубь образца. Причем ФП на поверхности материала будет происходить при температуре $T > T_C$ в пространственно-модулированное состояние, характеризуемое конечным волновым вектором.

В параграфе 1.3 рассматривается ориентационный ФП второго рода при температуре T_1 из легкоосной $(T < T_1)$ в угловую $(T > T_1)$ ферромагнитную фазу для полупространства $x \ge 0$. Варьируя по углу поворота θ вектора намагниченности выражение для свободной энергии неоднородного ферромагнетика

$$F = \int_{V} \left(\frac{\alpha}{2} M_0^2 (\nabla \theta)^2 + \beta_1 M_0^2 \sin^2 \theta + \beta_2 M_0^2 \sin^4 \theta \right) dV + \int_{S} K_s \sin^2 \theta dS, \tag{5}$$

где α — константа обменного взаимодействия; M_0 — величина спонтанной намагниченности; $\beta_1 M_0^2 = K_1$ и $\beta_2 M_0^2 = K_2$ — константы магнитной анизотропии, $\beta_1 = \beta_{10} (T - T_1)$, получаем уравнение равновесия с граничными условиями

$$-\alpha \frac{d^2 \theta}{dx^2} + 2\beta_1 \sin \theta \cos \theta + 4\beta_2 \sin^3 \theta \cos \theta = 0; \tag{6}$$

$$\theta(\infty) = \theta_{\infty}; \tag{7}$$

$$\alpha \frac{d\theta}{dx} - \beta_s \sin 2\theta \bigg|_{x=0} = 0, \tag{8}$$

где $\theta_{\infty} = \arcsin\sqrt{-K_1/(2K_2)}$, $\beta_s = K_s/M_0^2$. Аналитическое решение задачи (6)—(8) дает распределение угла поворота $\theta(x)$ для вектора намагниченности и выражение для угла θ_0 на поверхности:

$$tg\theta_{0} = tg\theta_{\infty} \frac{\sqrt{1 + \frac{\alpha^{2}}{4\beta_{s}^{2} l_{m}^{2}}} - \frac{\alpha}{2\beta_{s} l_{m}} + 1}}{\sqrt{1 + \frac{\alpha^{2}}{4\beta_{s}^{2} l_{m}^{2}}} - \frac{\alpha}{2\beta_{s} l_{m}} - 1}},$$
(9)

где $l_m = \sqrt{\alpha/(2\beta_2)}$ — характерная длина изменения угла θ . Из формулы (9) следует, что вблизи температуры T_1 ФП изменение угла $\theta_0(T)$ происходит по закону более быстрому, чем в объеме материала — $\theta_\infty \sim \sqrt{T-T_1}$.

Во второй главе рассмотрено поведение температуры T_f ФП и термодинамических свойств тонких пленок ферроиков вблизи точки структурного ФП, не сопровождающегося возникновением дальнодействующих полей.

В параграфе 2.1 рассматривается ФП в тонкой СЭП толщиной l, лежащей в плоскости (x, y), $z \in [0, l]$, со свободной энергией (1), вариация которой, в линейном случае, приводит к краевой задаче Штурма-Лиувилля:

$$\kappa \frac{d^2 \eta}{dz^2} + \alpha \eta = 0; \tag{10}$$

$$\kappa \frac{d\eta}{dz} \mp \alpha_s \eta \bigg|_{z=0,l} = 0. \tag{11}$$

Наименьшее собственное значение α_1 задачи (10), (11) определяет смещение $\Delta T = \left| T_f - T_C \right|$ температуры T_f , приведенное на рис. 1 для пленки триглицинсульфата (ТГС) в зависимости от знака α_s .

Рис. 1. Зависимость смещения ΔT температуры $\Phi\Pi$ пленки ТГС от ее приведенной толщины l/a: a) $\alpha_* > 0$; б) $\alpha_* < 0$

В случае $\alpha_s>0$ (рис. 1а) поверхность препятствует возникновению $\Phi\Pi$, поэтому температура $T_f< T_C$ и смещение ΔT растет с увеличением параметра α_s . В случае $\alpha_s<0$ (рис. 1б) поверхность способствует $\Phi\Pi$, который начинается с поверхности пленки при $T_f>T_C$ (функция распределения параметра порядка $\eta(z)$ выпукла вниз), причем величина ΔT растет с увеличением $|\alpha_s|$ более существенно и $\lim_{t\to\infty} \Delta T = f\left(\alpha_s\right)$ по сравнению со случаем $\alpha_s>0$.

Из условия минимума свободной энергии определены зависимости нормированных параметров порядка в центре пленки η_m/η_∞ и на ее поверхности η_0/η_∞ ; нормированной свободной энергии F/F_∞ от параметров пленки l,α_s и от температуры; нормированной теплоемкости $c_p/c_{p\infty}$ от температуры, где индекс « ∞ » соответствует величинам в объемном образце.

Путем варьирования свободной энергии (1) получено точное решение для распределения параметра порядка

$$\tilde{\eta}(\tilde{z}) = \sqrt{1 + \sqrt{1 - C_1}} \operatorname{sn}\left(\sqrt{\frac{\alpha}{2} \frac{C_1}{1 + \sqrt{1 - C_1}}} \tilde{z} + C_2, k\right),\tag{12}$$

где $\tilde{\eta} = \eta / \eta_{\infty}$, $\tilde{z} = z / a$; $\tilde{l} = l / a$, $\tilde{\alpha}_s = \alpha_s / a$; k — модуль эллиптических функций; константы интегрирования C_1 , C_2 находились численно из граничных условий (11). Температура T_f ФП при $\alpha_s > 0$ определялась как точка появления ненулевого решения функции (12) в зависимости от параметров l, α_s пленки в симметричном (рис. 2) и несимметричном случаях.

Рис. 2. Зависимость температуры $\Phi\Pi$ в пленке ТГС от нормированной толщины l/a пленки для разных нормированных параметров αJa на ее плоскостях (а) и от нормированного параметра αJa на плоскостях пленки для разных нормированных ее толщин l/a (б)

С уменьшением толщины l пленки и ростом параметра α_s температура $\Phi\Pi$ снижается в связи с возрастанием относительного вклада энергии неоднородности и энергии поверхности в свободную энергию (1). С учетом корней уравнения $T_f(l_{cr},\alpha_s)=0$ построена фазовая диаграмма, на которой кривая $l_{cr}=f(\alpha_s)$ разделяет области существования низкотемпературной и высокотемпературной фазы. С увеличением параметра α_s температурные зависимости свободной энергии и теплоемкости смещаются вниз и приобретают линейный характер, а скачок теплоёмкости в точке $\Phi\Pi$ будет меньше, чем в объемном кристалле.

Поместив на границах СЭП сегнетоэлектрические материалы с более высокой температурой ФП, и, добавив в функционале (1) энергию $-h\eta$ пленки во внешнем поле h, по известным формулам

$$c_p = -T \frac{\partial^2 F}{\partial T^2}; \qquad \chi = \frac{d\langle \eta \rangle}{dh}$$
 (13)

были численно рассчитаны температурные зависимости нормированной теплоемкости $c_p / c_{p\infty}$ и диэлектрической восприимчивости χ . Действие сторонних сегнетоэлектриков оказалось аналогичным действию внешних электрических полей, размывающих $\Phi\Pi$ в плёнке (рис. 3а, где $\eta_{\infty}^{(0)}$ – спонтанная поляризация объемного кристалла при нуле Кельвин, толщина l=30a).

В тонких сегнетоэластических пленках вблизи точки ФП при специальном выборе геометрии задачи, исключающем появление собственных упругих полей, на примере пленки $KH_3(SeO_3)_2$ толщиной l=30a получены зависимости температуры T_f^h ФП в поле внешних напряжений σ и температурные зависимости обратной податливости $\chi^{-1}(T)$ (рис. 36), подчиняющиеся закону Кюри-Вейсса. Рост внешних напряжений σ , сонаправленных вектору $\vec{\eta}$, и

снижение параметра α_s повышают температуру T_f^h ФП и понижают минимальную толщину l_{cr} пленки.

Рис. 3. Температурные зависимости диэлектрической восприимчивости χ для случая одинаковых значений нормированной поляризации $\eta(0)/\eta_{\infty}^{(0)}=\eta(1)/\eta_{\infty}^{(0)}=\eta_1$ на плоскостях плёнки $BaTiO_3$ (а) и обратной податливости χ^1 пленки $KH_3(SeO_3)_2$ с полной фиксацией спонтанной деформации на подложке и разным значением параметра α_s на верхней плоскости (б)

В параграфе 2.2 приведена методика определения температуры T_f^h структурного $\Phi\Pi$ в тонких пленках в достаточно слабом $\left(h << 8\pi^3 \sqrt{\kappa^3} / \left(l^3 \sqrt{\beta}\right)\right)$ внешнем поле, сопряженном параметру порядка.

Подстановка решения неоднородного уравнения равновесия в граничные условия образует систему линейных уравнений относительно констант интегрирования. Из условия ее совместности вытекает система трансцендентных уравнений

$$\begin{cases} \sin\sqrt{\alpha}\tilde{l} = -\frac{2\tilde{\alpha}_s\sqrt{\alpha}}{\tilde{\alpha}_s^2 + \alpha}, \\ \cos\sqrt{\alpha}\tilde{l} = \frac{\tilde{\alpha}_s^2 - \alpha}{\tilde{\alpha}_s^2 + \alpha}, \end{cases}$$

наименьшее нетривиальное решение которой $\alpha_1 = \alpha_0 \left(T_C - T_f^h\right)$ определяет температуру T_f^h ФП в поле. В результате было обнаружено дополнительное смещение $\Delta T = T_f - T_f^h > 0$ точки ФП, зависящее от граничных условий (рис. 4), в интервале температур $\left(T_C - 4\pi^2\kappa / \left(\alpha_0 l^2\right), T_C - \pi^2\kappa / \left(\alpha_0 l^2\right)\right)$.

Смена однородного по толщине пленки внешнего поля на неоднородное повышает спад обратной восприимчивости $\chi^{-1}(T)$ пленки в парафазе при приближении к температуре T_f^h .

Рис. 4. Зависимость смещения ΔT температуры $\Phi \Pi$ от нормированной толщины l/a пленки ТГС во внешнем электрическом поле для разных нормированных параметров $\alpha_{_{i}}/a$

В параграфе 2.3 рассматривается задача о нахождении зависимости между шириной a домена и толщиной 2l тонкой пленки длиной $l_x >> a$ в зависимости от ее ширины l_y с лежащим в плоскости плёнки вектором параметра порядка $\vec{\eta} = \left\{0, \pm \eta(z), 0\right\}$. Ширина домена определяется минимумом энергии W, представляющей собой сумму электростатической энергии W_d и энергии доменных границ W_b . Последняя равна произведению удельной энергии стенок $W_b^1 = 2\sqrt{2\kappa\alpha}\eta_\infty^2/3$ на их общую площадь. Энергия полей рассеяния

$$W_{d} = \frac{l_{x}}{2a} \int_{-a-l}^{a} \int_{-a-l}^{l} \sigma(x,z) \varphi(x,y=0,z) dx dz,$$
 (14)

вычисляется с учетом периодичности функции плотности зарядов $\sigma(x,z)$ вдоль оси 0x и распределения (12) в случае жесткого закрепления параметра порядка на плоскостях пленки. Для нахождения электрического потенциала $\varphi(x,y,z)$ используется уравнение Лапласа с граничными условиями, выражающими непрерывность потенциала и нормальной составляющей вектора индукции при переходе через границу раздела на заряженных торцах пленки. Выражение для энергии W плёнки имеет вид

$$W = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\pi c_n^2 d_m^2}{f_{np} \left(\varepsilon_{\parallel} \text{th} \left(f_{nm} l_y / 2 \right) + 1 \right)} + \frac{l_y W_b^1}{a}, \tag{15}$$

где c_n , d_m и f_{nm} — коэффициенты, зависящие от индексов суммирования и параметров образца, ε_{\parallel} — проницаемость пленки вдоль полярной оси. Из условия минимума выражения (15) определяется искомая зависимость $a(2l,l_y)$. Ширина домена оказывается существенно выше, чем в однородном случае и снижается с уменьшением ширины и с ростом толщины пленки.

<u>В третьей главе</u> приведены результаты исследований особенностей $\Phi\Pi$ второго рода в тонких СЭП, ферромагнитных пленках и многослойных структурах сегнетоэлектрик-диэлектрик.

<u>В параграфе 3.1</u> рассматривается тонкая СЭП с вектором поляризации, расположенным вдоль оси 0z, перпендикулярно плоскости (x,y), пленки и свободной энергией

$$F = \int_{V_c} \left(-\frac{\alpha}{2} \vec{P}^2 + \frac{\beta}{4} \vec{P}^4 + \frac{\kappa}{2} (\nabla P)^2 - \vec{E} \cdot \vec{P} - \vec{E}_{ext} \cdot \vec{P} \right) dV - \int_{V_c} \frac{\varepsilon}{8\pi} \vec{E}^2 dV + \int_{S} \frac{\alpha_s}{2} \vec{P}^2 dS,$$
(16)

где $\vec{P} = \{0,0,P(z)\}$ — вектор поляризации; \vec{E} и \vec{E}_{ext} — вектора напряженности собственного и внешнего электрического поля соответственно; ε – вклад в диэлектрическую проницаемость (преимущественно электронный), не учитываемый с помощью параметра порядка; V_i – объем СЭП; V_{∞} – объем пространства внутри и вне пленки; S – площадь поверхности пленки. Далее индексы «i» и «e» характеризуют величины внутри и вне пленки соответственно. С учетом связи $\vec{E} = -\nabla \varphi$, переходя в выражении (16) к независимым переменным $P(z), \varphi(z)$, и, опуская в нем слагаемое $\sim P^4$ вблизи точки $\Phi\Pi$, после варьирования (16) получаем систему обыкновенных дифференциальных уравнений с граничными условиями. Подстановка общих решений P, φ для случая $\vec{E}_{ext} = 0$ в граничные условия образует однородную систему линейных уравнений (ОСЛУ) относительно констант интегрирования. Из условия равенства нулю ее определителя вытекает трансцендентное уравнение, наименьший корень которого определяет температуру T_f ФП. Величина T_f оказалась ниже соответствующего значения, найденного без учета деполяризующих полей, на постоянную величину $\Delta T = 4\pi/(\varepsilon_i \alpha_0)$, не зависящую от толщины пленки и свойств ее поверхности ($\Delta T \sim 107$ K для ТГС). Экранирование поверхностных зарядов способно значительно повысить температуру T_f ФП на величину ΔT , зависящую от параметра α_s ($\Delta T \sim 1$ К при $\alpha_s = 0.01a$ и ΔT ~17 К при α_s =a для СЭП из ТГС толщиной l=10a). Определена обратная статическая диэлектрическая проницаемость пленки

$$\varepsilon_{s}^{-1} = \frac{1}{l} \frac{\partial(\varphi_{i}(0) - \varphi_{i}(l))}{\partial E_{ext}} = \frac{\varepsilon_{e}}{\varepsilon_{i}} - \frac{4\pi}{\varepsilon_{i}^{2} \alpha_{E}} \left(1 - \frac{2\tilde{\alpha}_{s}}{\tilde{l} \sqrt{\alpha_{E}}} \frac{\operatorname{th}\left(\sqrt{\alpha_{E}}\tilde{l} / 2\right)}{\sqrt{\alpha_{E}} \operatorname{th}\left(\sqrt{\alpha_{E}}\tilde{l} / 2\right) + \tilde{\alpha}_{s}} \right), (17)$$

где $\alpha_E = \alpha - 4\pi / \varepsilon_i$. С ростом толщины l пленки и уменьшением параметра α_s диэлектрическая проницаемость ε_s увеличивается в связи с уменьшением корреляционных и поверхностных вкладов в свободную энергию и стремится к соответствующему значению объемного кристалла.

<u>В параграфе 3.2</u> рассматриваются особенности $\Phi\Pi$ из однородного магнитного состояния в неоднородное в тонкой ферромагнитной пленке, происходящего при изменении толщины l плёнки с несовпадающими по направле-

нию осями объёмной и поверхностной анизотропии. Полная свободная энергия плёнки имеет вид

$$W = W_l + W_a + W_m + W_H, (18)$$

где W_l — обменная энергия; W_a — энергия анизотропии; W_m — магнитостатическая энергия; W_H — зеемановская энергия. Минимизация выражения (18) даёт уравнение равновесия

$$\alpha \Delta \vec{M} - \frac{\partial w_a}{\partial \vec{M}} + \vec{H}_m + \vec{H} = 0, \tag{19}$$

которое нужно решать с обменным граничным условием

$$\left[\vec{M}, -\frac{\alpha}{l_s}\frac{\partial \vec{M}}{\partial z} + \vec{H}_m^s - \frac{\partial w_a^s}{\partial \vec{M}} + \vec{H}\right] = 0, \tag{20}$$

где α — константа обменного взаимодействия; w_a^s — плотность энергии поверхностной анизотропии; \vec{H}_m^s — поле магнитного дипольного взаимодействия; \vec{H} — внешнее магнитное поле; l_s — величина порядка толщины поверхностного слоя.

Распределение намагниченности $\vec{M}(\vec{r}) = \{0, M_0 \sin \theta, M_0 \cos \theta\}$ описывается двумя ситуациями:

1. Плёнка имеет объёмную анизотропию типа «лёгкая плоскость», поверхностную – «лёгкая ось». Тогда задача (19), (20) принимает вид

$$\frac{d^2\theta}{d\tilde{z}^2} + (4\pi + \beta)\cos\theta\sin\theta - H/M_0\sin(\theta - \psi) = 0; \qquad \frac{d\theta}{d\tilde{z}} \mp \frac{\sin 2\theta}{d} \bigg|_{\tilde{z}=0,\tilde{I}} = 0, \quad (21)$$

где ψ — угол между вектором \vec{H} и осью 0z; $d=2\alpha/\left(\beta^s l \delta\right)$ — безразмерный параметр, характеризующий закрепление спинов на поверхности плёнки; $\tilde{z}=z/\delta$; $\tilde{l}=l/\delta$; $\delta=\sqrt{\alpha(\beta+4\pi)}$.

2. Плёнка имеет объёмную анизотропию типа «лёгкая ось», поверхностную – «лёгкая плоскость». Тогда задача (19), (20) принимает вид

$$\frac{d^2\theta}{d\tilde{z}^2} + (4\pi - \beta)\cos\theta\sin\theta - H/M_0\sin(\theta - \psi) = 0; \quad \frac{d\theta}{d\tilde{z}} \pm \frac{\sin 2\theta}{d} \Big|_{\tilde{z} = 0, \tilde{l}} = 0. \quad (22)$$

Численное решение краевых задач (21), (22) позволило рассчитать проекции относительных величин средних намагниченностей вдоль координатных осей, средний угол поворота $\bar{\theta}$ вектора \vec{M} (рис. 5a) и значения компонент тензора магнитной восприимчивости (рис. 5б) для рассматриваемых ситуаций в зависимости от толщины пленки.

Контролируемое поверхностью однородное магнитное состояние во второй ситуации сохраняется до бо́льших толщин плёнки, чем в первой, где поля рассеяния способствуют его разрушению.

Рис. 5. Зависимости среднего угла поворота $\bar{\theta}$ вектора намагниченности \bar{M} для первой ситуации (а) и компонент тензора магнитной восприимчивости χ_{yy} и χ_{zz} для первой и второй ситуации соответственно (б) от толщины пленки Co

В параграфе 3.3 рассматривается задача из п. 3.1 для случая $E_{ext} = 0$ с учетом неоднородности поляризации в плоскости СЭП. Для поиска независимых функций применяется преобразование Фурье: $P(x,y,z) \rightleftharpoons \hat{P}(k_x,k_y,z)$ и $\varphi(x,y,z) \rightleftharpoons \hat{\varphi}(k_x,k_y,z)$, где $k_x^2 + k_y^2 = k_\perp^2$ задает пространственную модуляцию полярной фазы. Подстановка общих решений для трансформант $\hat{P}(k_{\perp},z),\hat{\varphi}(k_{\perp},z)$ в граничные условия образует ОСЛУ относительно констант интегрирования. Из условия равенства нулю ее определителя вытекает трансцендентное уравнение, наименьший корень которого характеризует температуру T_f ФП. Из зависимости температуры T_f от нормированного волнового вектора $k_{\perp} \cdot a$ (рис. 6a) следует, что при охлаждении из парафазы СЭП, с толщиной l выше некоторого значения (l~10 ML для пленки ТГС), при определенной температуре $T_{th} > T_{f}$ происходит переход в неоднородное доменоподобное состояние, предшествующее однородному полярному состоянию с температурой T_f ФП, причем $T_f < T_{fh} < T_C$ ($\alpha_s > 0$) и $T_C < T_f < T_{fh}$ ($\alpha_s < 0$). Если $\alpha_s < 0$, то с увеличением $|\alpha_s|$ влияние поверхности растет и выше некоторого значения ($|\alpha_s| = 0.4a$ для пленки ТГС) температура T_{th} практически перестает зависеть от толщины пленки – поверхность «затягивает» ФП в высокотемпературную область и полностью контролирует наличие полярного состояния. Температурный интервал $\Delta T = T_{th} - T_{f}$ существования неоднородной фазы растет с толщиной пленки и в случае α_{s} < 0 (рис. 6б) значительно у́же, чем в случае $\, \alpha_{\scriptscriptstyle \rm c} > 0 \,$. Повышение температуры $T_{\it fh}$ за счет экранирования зарядов на поверхности пленки несущественно (~2.5 К для пленки ТГС толщиной l = 10a, $|\alpha_s| = 0.25a$).

Рис. 6. Зависимости температуры T_f фазового перехода от нормированного волнового вектора $k_\perp \cdot a$ для $\alpha_s = 0.25a$ (а) и ширины температурного интервала ΔT существования неоднородной фазы от нормированной толщины 1/a (б) для пленки ТГС

В параграфе 3.4 на основании методики из п. 2.2 описано смещение $\Delta T = T_f - T_f^h > 0$ температуры ФП в тонких СЭП, совпадающее с величиной ΔT из п. 2.2, при приложении достаточно слабого $\left(E_{ext} << 8\pi^3 \sqrt{\kappa^3} / \left(l^3 \sqrt{\beta}\right)\right)$ электрического поля, сопряженного параметру порядка. Независимость величины ΔT от направления полярной оси объясняется отклонением температур T_f и T_f^h в СЭП от соответствующих значений в пленке без дальнодействующих полей на одинаковую величину $4\pi / (\varepsilon_i \alpha_0)$. Экранирование поверхностных зарядов повышает смещение $\Delta T = T_f - T_f^h$ (примерно на 15 К при l=10a, $\alpha_s=a$ для ТГС) и эта разница растет с увеличением α_s .

В параграфе 3.5 приведены результаты исследований статической диэлектрической проницаемости и температуры ФП в многослойных тонкопленочных структурах на основе тонких диэлектрических и сегнетоэлектрических слоев с вектором поляризации, перпендикулярным их плоскости. Линеаризация выражения (16) вблизи точки $P = P_{\infty}$ и его варьирование по независимым переменным P(z), $\varphi(z)$ дает систему уравнений равновесия с неоднородными граничными условиями при $\vec{E}_{ex} > 0$. На основании решения $\varphi(z)$ и формулы (17) были получены аналитические выражения для статической диэлектрической проницаемости ε_s слоистых тонкопленочных структур диэлектрик-сегнетоэлектрик (I), сегнетоэлектрик-сегнетоэлектрик (II) и сегнетоэлектрик-диэлектрик (I), сегнетоэлектрик (III) (рис. 7а) как функции их параметров. Для определения температуры T_f ФП в структурах (рис. 7б) использовалась процедура, описанная в п. 3.1 для случая обособленной СЭП.

Рис. 7. Зависимости эффективной диэлектрической проницаемости ε_s от приведенной толщины l_e/a диэлектрической прослойки SiO_2 (a) и температуры $T_f \Phi \Pi$ от приведенного параметра $\alpha_s^{(0)}/a$ между слоями для разных параметров $\alpha_s^{(j)}/a$ на границах структуры TГС-SiO₂-TГС (б)

<u>В четвертой главе</u> описаны результаты исследований продольного магнитоэлектрического (МЭ) эффекта в двухслойной структуре ферромагнетикпьезоэлектрик с точным учётом индуцируемого неоднородного электрического поля по ее толщине.

В параграфе 4.1 рассмотрены геометрия структуры ферромагнетикпьезоэлектрик с направлением векторов поляризации и намагниченности перпендикулярно ее плоскости (x0y), а также природа исследуемого МЭ эффекта.

В параграфе 4.2 на основе уравнений колебаний слоев и уравнения электростатики для пьезослоя составлено и численно решено трансцендентное уравнение, характеризующее однородные в плоскости структуры собственные колебательные частоты (рис. 8а). Получена частотная зависимость коэффициента α_E МЭ связи и проведена оценка его максимальных значений путем учета диссипативных свойств структуры. С ростом толщины l_p пьезослоя величина α_E на резонансных частотах имеет немонотонный характер, что также наблюдалось в эксперименте [11].

В параграфе 4.3 изложено исследование неоднородных в плоскости слоев колебаний (вектор смещения точек среды $\vec{u} = \{u_x, u_z\}$) и построены зависимости наинизшей собственной частоты v_0 от волнового числа k при фиксированных толщинах слоев.

В параграфе 4.4 проанализировано влияние толщины l_p пьезослоя и длины L структуры на ее наинизшую собственную частоту v_0 колебаний (рис. 8б) с привлечением метода разложения по собственным функциям для поиска компоненты $u_x(x,z)$ вектора $\vec{u}\{u_x,0\}$ смещений среды и производной электрического потенциала $\partial \varphi/\partial x$. Из рис. 8б видно, что частота v_0 собственных колебаний с учетом электрических полей (штриховая кривая) хорошо согласуется с экспериментом (точки) из работы [11].

Рис. 8. Зависимости наинизшей собственной частоты v_0 колебаний структуры никельцирконат-титанат свинца: а) от толщины l_p пьезослоя при толщине $l_m = 0.1$ мм ферромагнитного слоя; б) от длины L структуры для $l_p = 0.4$ мм, $l_m = 0.29$ мм без учета (сплошная кривая) и с учетом (штриховая кривая) электрического поля. Вставка: теория без учета электрического поля (кривая) и эксперимент (точки) [11]

В пятой главе изложены результаты исследований спектров собственных частот $\{\omega_n\}$ и времен релаксации $\{\tau_n\}$ поляризации в тонких СЭП, спектра $\{\tau_n\}$ при переключении ансамбля сегнетоэлектрических частиц (СЭЧ), динамической диэлектрической проницаемости слоистых структур, описанных в п. 3.5, а также переключения поляризации в сверхтонких СЭП.

<u>В параграфе 5.1</u> с помощью варьирования лагранжиана для СЭП с вектором поляризации, расположенным параллельно и перпендикулярно плоскости пленки, получены краевые задачи, собственные значения которых определяют спектры собственных частот $\{\omega_n\}$, зависящие от параметров пленки и температуры (рис. 9).

Рис. 9. Зависимость собственных частот ω_n от приведенной толщины l/a для разных параметров α_s/a при $T=T_f$ (a) и от температуры при l=10a, $\alpha_s=a$ (цифры обозначают порядковые номера n для ω_n) (6) при расположении вектора поляризации в плоскости пленки ТГС

В параграфе 5.2 на основе выбранного для уравнения Ландау-Халатникова решения вида $P(z,t) = P(z) e^{-t/\tau}$ получены краевые задачи, собственные значения которых определяют спектры допустимых времен релаксации $\{\tau_n\}$ поляризации при охлаждении из парафазы СЭП с разной ориентацией вектора поляризации. Температурные зависимости $\tau_n^{-1}(T)$ носят линейный характер, величина τ_1^{-1} в точке ФП обращается в нуль при любых параметрах пленки. Показано, что деполяризующие поля способны ускорить диэлектрическую релаксацию в несколько раз (примерно в 3 раза для пленки ТГС).

В параграфе 5.3 изложены результаты исследования коллективного поведения одноосных СЭЧ, представленных электрическими диполями, во внешнем электрическом поле. Релаксация поляризации при переключении ансамбля из n-частиц моделируется марковским случайным процессом, где каждое из n+1 состояний соответствует числу n СЭЧ с одинаковым направлением поляризации. Применение спектрального разложения к матрице интенсивностей переходов для системы уравнений Колмогорова дает характеристическое уравнение для определения спектра времен релаксации ансамбля. Оказалось, что число времен релаксации определяется количеством частиц n в ансамбле, а вклад наибольшего времени релаксации в среднее время релаксации системы возрастает с увеличением числа частиц в ней.

В параграфе 5.4 представлены результаты исследований динамической диэлектрической проницаемости $\varepsilon_d = \varepsilon_d' - i \varepsilon_d''$ слоистых структур из п. 3.5 во внешнем электрическом поле с частотой ω существенно ниже точки ФП. С помощью представления функций $P(z,t), \varphi(z,t)$ в виде статической и динамической составляющих аналитически найдены вклады размерных эффектов в дисперсию действительной ε_d' и мнимой ε_d'' частей динамической проницаемости структур.

Для слоев ТГС и ТГФБ (триглицинфторбериллата) вклад в мнимую часть ε_d'' проницаемости для структур I и II оказался примерно в 4–8 раз ниже, чем для обособленной СЭП из ТГС. В структуре I с ростом толщины l сегнетоэлектрической прослойки величина ε_d' уменьшается, а ее дисперсия усиливается по сравнению с обособленной СЭП; с ростом толщины l_e диэлектрических слоев величина ε_d' увеличивается, а ε_d'' – понижается (рис. 10).

Рис. 10. Зависимости вклада размерного эффекта в действительную ε_d' (а) и мнимую ε_d'' (б) части диэлектрической проницаемости структуры SiO₂-TГС- SiO₂ от приведённой частоты $\omega\gamma$ внешнего электрического поля для разных приведенных толщин l/a сегнетоэлектрической прослойки при $\alpha_s = a$, $l_e = 5a$

В структуре II величина ε_d практически не зависит от толщины контактирующих сегнетоэлектрических слоев в связи с повышением их электрической жесткости, обусловленной «сцеплением» деполяризующих полей. По этой же причине относительное снижение мнимой части ε_d'' проницаемости с ростом толщины l_e диэлектрической прослойки в структуре III происходит гораздо слабее, чем в структуре I.

В параграфе 5.5 рассматривается переключение поляризации в тонких СЭП в достаточно слабом (влиянием на профиль поляризации можно пренебречь) внешнем электрическом поле $\vec{E}_{ext} = \left\{0,0,E_{ext}\right\}$ без учета деполяризующих полей (\vec{E} =0) С помощью функционала свободной энергии (16) была определена равновесная форма зародыша обратного домена (ЗОД), возникающего при переключении поляризации (рис. 11):

$$\tilde{P}(\tilde{x}, \tilde{z}) = -\tilde{\eta}(\tilde{z}) \left[\operatorname{th}\left(\sqrt{\frac{\alpha}{2}}\tilde{\eta}(\tilde{z})\left(\tilde{x} + \frac{\tilde{L}}{2}\right)\right) - \operatorname{th}\left(\sqrt{\frac{\alpha}{2}}\tilde{\eta}(\tilde{z})\left(\tilde{x} - \frac{\tilde{L}}{2}\right)\right) - 1 \right], \quad (23)$$

где $\tilde{\eta}(\tilde{z})$ – распределение поляризации вида (12) по толщине пленки; $\tilde{L} = L/a$ – приведенный размер зародыша.

Рис. 11. Форма зародыша обратного домена в тонкой сегнетоэлектрической пленке ТГС

Из условия максимума добавки $\Delta F\left(L_{cr}\right)$ к свободной энергии, определяемой суммой энергии доменных границ и энергии зародыша во внешнем поле, найден критический размер L_{cr} ЗОД, способного расти за счет движения доменных стенок, как функция толщины l пленки, параметра α_s на ее плоскостях, напряженности E_{ext} (рис. 12a), температуры. Для пленки ТГС построена диаграмма (α_s,l) , характеризующая параметры ЗОД, способного к дальнейшему росту. Определен кроссовер перехода от неоднородного переключения поляризации к однородному при некотором значении параметра $\alpha_s^{cr}(l,E_{ext})$ на границах пленки и значениях внешнего поля $E_{ext} << P_{\infty}/3$. В рамках кинети-

ческой теории Зельдовича роста зародышей найдена средняя скорость переключения поляризации $\langle dP/dt \rangle = f(l,\alpha_s,E_{ext})$ (рис. 126).

Рис. 12. Зависимости приведенного критического размера L_{cr}/a ЗОД от приведенной напряженности E_{ext}/P_{∞} внешнего электрического поля при $\alpha_s = a$ (a) и средней скорости переполяризации $\langle dP/dt \rangle$ от приведенной толщины l/a пленки ТГС при $\alpha_s = 0.3a$ (6)

<u>В шестой главе</u> приведены результаты исследований температуры T_r ФП в тонких сегнетоэлектрических и сегнетоэластических стержнях неограниченной длины.

В параграфе 6.1 был рассмотрен сегнетоэлектрический ФП в стержнях прямоугольного и круглого сечения с вектором поляризации $\vec{P} = \{0,0,P(x,y)\}$ в направлении оси 0z стержня, исключающем появление деполяризующих полей.

Варьирование свободной энергии (16) при $\vec{E} = \vec{E}_{ext} = 0$ в случае стержня прямоугольного сечения $D = \left\{ \left(x,y \right) \middle| 0 \le x \le l_1, \, 0 \le y \le l_2 \right\}$ приводит к задаче Штурма-Лиувилля о распределении поляризации по сечению. Наименьшее собственное значение $\xi_{11} = \upsilon_1 + \psi_1$ этой задачи определяет температуру ФП (рис. 13):

$$T_r = T_C \mp \frac{\kappa \xi_{11}}{\alpha_0}.$$
 (24)

Знак в выражении (24) противоположен знаку параметра α_s на границе стержня, а корни v_1 , ψ_1 определяются численно как наименьшие решения характеристических уравнений

$$\operatorname{tg}\left(\sqrt{\upsilon_{n}}l_{1}\right) = \frac{2\sqrt{\upsilon_{n}}\alpha_{s}\kappa}{\upsilon_{n}\kappa^{2} - \alpha_{s}^{2}}; \quad \operatorname{tg}\left(\sqrt{\psi_{m}}l_{2}\right) = \frac{2\sqrt{\psi_{m}}\alpha_{s}\kappa}{\psi_{m}\kappa^{2} - \alpha_{s}^{2}}, \quad n, m \in \mathbb{N}, \ \alpha_{s} > 0; \quad (25)$$

$$\mathrm{e}^{\sqrt{\nu_1}l_1} = \frac{\kappa\sqrt{\nu_1} - \alpha_s}{\kappa\sqrt{\nu_1} + \alpha_s}; \qquad \qquad \mathrm{e}^{\sqrt{\psi_1}l_2} = \frac{\kappa\sqrt{\psi_1} - \alpha_s}{\kappa\sqrt{\psi_1} + \alpha_s}, \qquad \alpha_s < 0.$$

С увеличением стороны l_2 сечения объемная часть свободной энергии (16) растет быстрее поверхностной и в пределе $l_2 \to \infty$ (пленка) температура $\Phi\Pi$ $\lim_{l_2 \to \infty} T_r = \max T_r = T_f \quad (\alpha_s > 0)$ и $\lim_{l_2 \to \infty} T_r = \min T_r = T_f \quad (\alpha_s < 0)$ (сплошные кривые на рис. 13).

Рис. 13. Зависимость температуры T_r фазового перехода от соотношения сторон l_1/l_2 сечения стержня ТГС при $\alpha_* = a$ (a) и $\alpha_* = -a$ (б)

В случае круглого сечения стержня радиусом R для осесимметричной задачи его температура $\Phi\Pi$ (рис. 14) имеет вид

$$T_r = T_C \mp \frac{\kappa}{\alpha_0} \left(\frac{\mu_1^{(0)}}{R} \right)^2 \tag{26}$$

и определяется наименьшим корнем $\mu_{\rm l}^{(0)}$ уравнения

$$\kappa \mu^{(0)} \mathbf{I}_{1} \left(\mu^{(0)} \right) - R \alpha_{s} \mathbf{I}_{0} \left(\mu^{(0)} \right) = 0, \quad \alpha_{s} > 0;$$

$$\kappa \mu^{(0)} \mathbf{I}_{1} \left(\mu^{(0)} \right) + R \alpha_{s} \mathbf{I}_{0} \left(\mu^{(0)} \right) = 0, \quad \alpha_{s} < 0.$$

Рис. 14. Зависимость температуры T_r ФП стержня ТГС от его приведенного радиуса R/a (a) для $\alpha > 0$ (a) и $\alpha < 0$ (б)

При включении внешнего электрического поля \vec{E}_{ext} вдоль полярной оси получены аналитические выражения для профиля поляризации и статической диэлектрической проницаемости ε_s от параметров стержня. С увеличением радиуса R стержня величина ε_s возрастает, а температурная зависимость $\varepsilon_s^{-1}(T)$ в парафазе имеет незначительное отклонение от линейного закона.

<u>В параграфе 6.2</u> рассматривается сегнетоэластический $\Phi\Pi$ в стержне прямоугольного сечения со свободной энергией

$$F = \int_{V} \left[-\frac{\alpha}{2} \eta^2 + \frac{\beta}{4} \eta^4 + \frac{\kappa}{2} (\nabla \eta)^2 - \sigma \eta \right] dV + \int_{S} \frac{\alpha_s}{2} \eta^2 dS, \tag{27}$$

где роль параметра порядка $\eta(x,y)$ играет пластическая деформация: по сечению стержня $-u_{xy}^{(p)}$ или вдоль оси стержня $-u_{xz}^{(p)}$; $\sigma=\sigma_{xy}$ или $\sigma=\sigma_{xz}$ - компонента тензора упругих напряжений σ_{ii} , сопряженная $\eta(x,y)$.

Плоская задача о ФП в напряжениях относительно неизвестных $\eta(x,y) = u_{xy}^{(p)}, \sigma_{xy}(x,y), \sigma_{ll}(x,y) = \sigma_{xx}(x,y) + \sigma_{yy}(x,y)$ состоит из линеаризованного уравнения равновесия для функционала (27) с двумя парами граничных условий вида (11) и двух уравнений совместности деформаций в форме Бельтрами-Митчелла. Раскладывая неизвестные по системе собственных функций $\{f_n(x)\}, \{g_m(y)\}$, получаем ОСЛУ относительно коэффициентов разложения. Равенство нулю ее определителя дает характеристическое уравнение, решение которого образует набор собственных значений, наименьшее из которых $\xi_{11} = \nu_1 + \psi_1$ определяет температуру ФП в стержне

$$T_{r} = T_{C} - \frac{\kappa}{\alpha_{0}} \left(\nu_{1} + \psi_{1} \right) - \frac{2E}{\alpha_{0} \left(1 - \nu^{2} \right)} \frac{\nu_{1} \psi_{1}}{\left(\nu_{1} + \psi_{1} \right)^{2}}, \tag{28}$$

где E — модуль Юнга, а собственные числа υ_1, ψ_1 зависят от типа граничных условий (первого, второго, третьего рода) для собственных функций f(x), g(y). В случае граничных условий третьего рода при $\alpha_s > 0$ температура ФП T_r (28) располагается между наименьшим (первого рода) и наибольшим (второго рода) значениями T_r при одинаковых параметрах стержня, а величины υ_1, ψ_1 определяются наименьшими корнями уравнений (25).

Аналогичный результат получен при постановке и решении задачи в перемещениях u относительно функций $\eta(x,y), u_x(x,y), u_y(x,y)$. Температура ФП в случае несимметричного закрепления η на границе (например, при нахождении стержня на подложке) существенно выше, чем в случае симметричного закрепления η (например, в нанокомпозитах с сегнетоэластическими волокнами).

В случае антиплоской деформации с неизвестными функциями $\eta(x,y) = u_{xz}^{(p)}$, $\sigma_{xz}(x,y)$, $\sigma_{yz}(x,y)$ аналогично случаю плоской деформации аналитически вычислена температура T_r ФП, которая смещена вверх относительно T_r для плоского случая на величину $E/(\alpha_0(1-\nu)) \Big(l_1 l_2/(l_1^2+l_2^2)\Big)^2$ при прочих одинаковых параметрах стержня.

В параграфе 6.3 рассматривается влияние постоянных касательных напряжений σ , приложенных к граням стержня антипараллельно параметру порядка, на температуру T_r^{σ} ФП в нем для плоского случая. В симметричной ситуации $\sigma_{xx} = \sigma_{yy}$ удается уменьшить размер системы от трех до двух дифференциальных уравнений относительно функций $\sigma_{xy}(x,y)$, $\eta(x,y) = u_{xy}^{(p)}$ с граничными условиями третьего рода на параметр порядка. Численно определив T_r^{σ} как точку появления ненулевого решения, были построены зависимости смещения $\Delta T = T_r - T_r^{\sigma}$ температуры ФП от величины внешних касательных напряжений σ на поверхности стержня. В случае стержне из $KH_3(SeO_3)_2$ функция $\Delta T(\sigma)$ растет нелинейно.

В задаче о ФП в напряжениях применение функции Эйри позволяет уменьшить размер системы от трех до двух уравнений относительно функций $\varphi(x,y)$, $\eta(x,y)=u_{xy}^{(p)}$, которые находятся методом разложения по собственным функциям задачи Штурма-Лиувилля для случая $\alpha_s \to \infty$ на границе стержня в окрестности точки ФП (рис. 15а). С помощью формулы (13) аналитически найдена температурная зависимость обратной податливости $\chi^{-1}(T)$ В стержнях квадратного сечения из $KH_3(SeO_3)_2$ размером l=60a и l=70a выявлено незначительное отклонение $\chi^{-1}(T)$ от линейного закона (рис. 15б).

Рис. 15. Распределение спонтанной деформации по сечению стержня $KH_3(SeO_3)_2$ квадратной формы вблизи температуры ФП при внешних напряжениях σ =10 МПа (а) и температурная зависимость обратной величины упругой податливости χ^{-1} (б) в случае $\alpha_* \to \infty$

<u>В седьмой главе</u> изложены особенности $\Phi\Pi$ и термодинамические свойства СЭЧ и ферромагнитных гранул (Φ МГ) в однородной среде.

<u>В параграфе 7.1</u> рассматривается $\Phi\Pi$ второго рода в сферически симметричных СЭЧ радиуса R со свободной энергией

$$F = \int_{V} \left\{ F_{\infty} + \frac{\kappa}{2} (\nabla P)^{2} - \vec{E}_{ext} \vec{P} \right\} dV + \int_{S} \frac{\alpha_{s}}{2} \vec{P}^{2} dS.$$
 (29)

Кусочно-параболическая аппроксимация позволяет сохранить нелинейность однородной части свободной энергии $F_{\infty} = -\alpha P^2 / 2 + \beta P^4 / 4$ и получить совокупность линейных дифференциальных уравнений на поляризацию. Их аналитические решения для внутренних и приповерхностных слоев СЭЧ гладко «сшивались» в единую функцию $P(\rho)$ с учётом краевого условия общего типа на границе частицы. Определены зависимости температуры T_p ФП, свободной энергии и поляризации СЭЧ от размера и параметра α_s на ее поверхности. Предполагая нормальный закон распределения СЭЧ по размерам с характерным радиусом R_s и среднеквадратическим отклонением σ , были рассчитаны температурные зависимости диэлектрической проницаемости ε_s и теплоемкости c_p ансамбля СЭЧ (рис. 16).

Рис. 16. Температурные зависимости диэлектрической проницаемости ε_s (a) и теплоемкости c_p (б) ансамбля сегнетоэлектрических частиц $BaTiO_3$ для R_s =60 Å, σ =60 Å

Существенное размытие функций $\varepsilon_s(T)$ и $c_p(T)$ ансамбля СЭЧ может являться одной из основных причин размытия термодинамических свойств по температуре в неоднородных материалах типа гранулированных нанокомпозитов сегнетоэлектрик-диэлектрик или сегнеторелаксорах. На основе статистики Больцмана определен суперпараэлектрический вклад в диэлектрическую проницаемость от малых СЭЧ, у которых свободная энергия сравнима с тепловой энергией $k_B T$, способных переориентироваться по направлению внешнего поля как единое целое.

В параграфе 7.2 описывается ФП первого рода в сферически симметричных СЭЧ со свободной энергией вида (29) с учетом

 $F_{\infty} = -\alpha P^2 / 2 + \beta P^4 / 4 + \gamma P^6 / 6$, где $\alpha = \alpha_0 \left(T - T_C\right)$, β , γ — коэффициенты разложения. Используя кусочно-параболическую аппроксимацию F_{∞} , аналогичную предыдущему параграфу, для предполагаемого нормального распределения частиц по размерам были рассчитаны температурные зависимости диэлектрической проницаемости ε_s и теплоемкости c_p ансамбля СЭЧ. Установлено, что в частицах достаточно малого размера ФП происходит по механизму второго рода, а в более крупных — по механизму первого рода. Последние дают больший вклад в диэлектрическую проницаемость ансамбля СЭЧ, чем первые, но слабее размывают ФП.

<u>В параграфе 7.3</u> описывается решение задачи о ФП в СЭЧ в форме цилиндра и эллипсоида вращения с учетом деполяризующих полей.

Сперва был рассмотрен ФП второго рода в цилиндрической СЭЧ высотой L=2H и радиусом R, с полярной осью вдоль оси частицы и свободной энергией вида (16). Переходя к независимым переменным P(r,z), $\varphi(r,z)$ с учетом связи $\vec{E}=-\nabla\varphi$, и, раскладывая в ряд функционал (16) вблизи точки ФП, после варьирования получаем систему обыкновенных дифференциальных уравнений с граничными условиями. В частном случае $\alpha_s\to\infty$ поляризация на границе СЭЧ отсутствует и деполяризующие поля будут только внутри СЭЧ, что позволяет не рассматривать область окружения. Опуская слагаемое $\sim P^4$ вблизи температуры T_p ФП, и, сводя систему из двух уравнений к одному дифференциальному уравнению четвёртого порядка в частных производных

$$-\kappa \Delta^2 P + 2\alpha \Delta P + \frac{4\pi}{\varepsilon} \frac{\partial^2 P}{\partial z^2} = 0, \tag{30}$$

ищем его решение в виде конечного степенного ряда по координате r с коэффициентами, зависящими от координаты z:

$$P(z,r) = f_0(z) + f_2(z)r^2 + f_4(z)r^4.$$

Тогда уравнение (30) сводится к трём обыкновенным дифференциальным уравнениям четвертого порядка относительно функций $f_0(z)$, $f_2(z)$, $f_4(z)$. Подстановка их общих решений в нулевые граничные условия дает ОСЛУ относительно 10 констант интегрирования. Равенство нулю ее детерминанта определяет температуру ФП в СЭЧ, значения которой существенно ниже, чем в случае пренебрежения деполяризующими полями (рис. 17а).

Для решения задачи о ФП первого рода использовался вариационный метод нахождения аналитических зависимостей P(r,z), $\varphi(r,z)$ вида

$$P(r,z) = A\cos\left(\frac{\pi r}{2R}\right)\sin\left(\frac{\pi z}{2H}\right)$$

с подгоночным параметром A, определяемым из условия минимума свободной энергии при $\alpha_s \to \infty$. Ширина B температурного гистерезиса ФП зависит только от формы и материальных параметров цилиндрической СЭЧ

$$B = \frac{9\beta^2 (3\pi^2 - 16)^2}{80\alpha_0 \gamma (5\pi^2 - 272/9)(\pi^2 - 4)}$$

и существенно отличается от соответствующего объемного значения (B для СЭЧ из $NaNO_2$ примерно в 3 раза выше, чем для объёмного кристалла).

В рамках теории эффективной среды определены температурные и концентрационные зависимости диэлектрической проницаемости ε_{eff} композита, состоящего из цилиндрических СЭЧ одного размера, одинаково ориентированных в диэлектрической матрице и электрически взаимодействующих между собой. Установлен немонотонный характер зависимости температуры $T_{p0}(R)$ ФП: между нулями функции $T_{p0}(R)$ имеется максимум, соответствующий некоторому радиусу $R_0(H)$, что подтверждается: а) наличием минимума на кривой $L_{cr}(R)$, соответствующей наименьшим размерам СЭЧ в полярном состоянии; б) присутствием двух нулей у функции $\varepsilon_{eff}^{-1}(R)$, соответствующих минимальному и максимальному радиусу цилиндрической СЭЧ в полярном состоянии при конкретной ее высоте.

В случае ФП первого рода у СЭЧ в форме эллипсоида вращения с большой полуосью a, совпадающей с полярной осью, и малой полуосью b также использовался вариационный метод с пробной функцией поляризации в эллипсоидальных координатах:

$$P(\xi) = A\cos\left(t\frac{\xi + b^2}{b^2}\right),\,$$

где параметр t учитывал состояние поверхности и определялся из условия

$$\operatorname{tg}(t) = \frac{\alpha_s b^2}{t \kappa}$$
.

Проделав описанную выше процедуру для нахождения вариационного параметра A были получены зависимости температуры T_{p0} ФП от параметров частицы. Зависимость $T_{p0}(b)$ как и в случае цилиндрической СЭЧ имеет немонотонное поведение: между нулями функции $T_{p0}(b)$ имеется максимум, однако его положение с удлинением СЭЧ смещается в противоположном направлении по сравнению со смещением максимума в цилиндрической частице. Подавляющее влияние деполяризующих полей в случае эллипсоидальной СЭЧ (рис. 176) слабее, чем в цилиндрической (рис. 17а, где k=a/b), что объясняется сплюснутой формой последней.

Рис. 17. Температура ФП второго рода в СЭЧ $BaTiO_3$ радиусом R=250 Å (а) и первого рода в СЭЧ $NaNO_2$ с полуосью b=20 Å (б) в зависимости от формы частицы при $\alpha_s \to \infty$

Для гранулированного композита с СЭЧ в форме эллипсоида, претерпевающими ФП второго рода, вблизи T_p установлено незначительное отклонение $\varepsilon_{\it eff}^{-1}(T)$ от линейного закона. В случае ФП первого рода такая нелинейность растет при смене формы СЭЧ с эллипсоидальной на цилиндрическую.

В параграфе 7.4 предложен механизм повышения температуры $\Phi\Pi$ в гранулированном композите за счет возникновения $\Phi\Pi$ на поверхности эллипсоидальных СЭЧ при температуре $T_C^s > T_C$, для чего в выражении (16) последний интеграл заменен выражением

$$F_s = \int_{S} \left\{ -\frac{\alpha_s^T}{2} \vec{P}^2 + \frac{\beta_s}{4} \vec{P}^4 \right\} dS \tag{31}$$

с коэффициентами $\alpha_S^T = \alpha_0 \left(T_C^s - T\right) l_s$; $\beta_s = \beta l_s$, где $l_s = \alpha_s/\alpha$ — толщина поверхностного слоя. Варьированием свободной энергии (16) с учетом (31) была получена система дифференциальных уравнений с граничными условиями относительно функций $P(\vec{r})$, $\varphi(\vec{r})$ для области СЭЧ и окружающей матрицы в форме куба с длиной ребра, на порядок превышающей размер большой оси эллипсоидальной СЭЧ. Температура T_p ФП для СЭЧ из ТГС при $T_c^s = 370\,$ К определялась численно методом конечных элементов как точка появления ненулевого решения у данной системы (рис. 18). При уменьшении размера СЭЧ возрастает положительный вклад энергии неоднородности в свободную энергию, стремящийся понизить T_p . Аномальный рост T_p связан с определяющим влиянием поверхности, контролирующим ФП для малых СЭЧ ($b < 20\,$ нм для ТГС). Снижение температуры T_p ФП с ростом коэффициента вытянутости k менее существенно, чем с ростом параметра $|\alpha_s|^{-1}$.

Рис. 18. Зависимость температуры T_p фазового перехода гранулы ТГС от ее радиуса b при k=1.5 для параметра $\alpha_s > 0$ (возрастающие функции) и $\alpha_s < 0$ (убывающие функции) (а) и от нормированного параметра $a/|\alpha_s|$ при b=2 нм (б)

В параграфе 7.5 описываются особенности $\Phi\Pi$ из однородного магнитного состояния в неоднородное в эллипсоидальной $\Phi\Pi$, вытянутой вдоль оси симметрии 0z, совпадающей с осью трудного намагничивания в объеме гранулы и осью легкого намагничивания на ее поверхности, со свободной энергией

$$W = \int_{V} \left\{ \frac{\alpha}{2} \left(\frac{\partial \vec{M}}{\partial r} \right)^{2} + \frac{\alpha}{2} \left(\frac{\partial \vec{M}}{\partial z} \right)^{2} + \frac{\beta}{2} \left(\vec{M}, \vec{n} \right)^{2} - \vec{H} \cdot \vec{M} \right\} dV, \tag{32}$$

где α — константа обменного взаимодействия; β — константа магнитной анизотропии; \vec{n} — орт вдоль оси 0z; $\vec{M}(r,z) = \left\{ M_0 \sin\theta, M_0 \cos\theta \right\}$ — вектор намагниченности; вектор \vec{H} включает внешнее и собственное магнитное поле. Минимизация свободной энергии (32) с учетом уравнения магнитостатики $\operatorname{div}\left(-\mu\vec{\nabla}\varphi_m + 4\pi\vec{M}\right) = 0$, где φ_m — магнитный потенциал; μ — магнитная проницаемость, изменяющаяся при переходе через границу Φ MГ, приводит к системе уравнений в частных производных относительно функций $\theta(r,z)$, $\varphi_m(r,z)$, которая решалась численно методом конечных элементов для гранулы из Co, помещенной в диэлектрическую матрицу SiO_2 (рис. 19). Размагничивающие поля наряду с поверхностной анизотропией способствуют Φ П в неоднородное магнитное состояние. С увеличением коэффициента вытянутости k=a/b и радиуса b Φ MГ объемная анизотропия усиливается, а поверхностная — снижается, и, найденная с помощью формулы (13) компонента χ_{zz} тензора магнитной восприимчивости растет.

Рис. 19. Зависимости относительной намагниченности гранулы Co вдоль малой полуоси от коэффициента вытянутости k (a) и от радиуса b гранулы при k=1 (б)

В восьмой главе излагаются результаты исследований температуры Бернса T_d в сегнеторелаксорах (СР) в зависимости от вида случайного поля $T_C(\vec{r})$ – локальной температуры ФП неоднородных полярных областей (ПО); прогнозируется температура ФП, ширина температурной области его размытия в тонкой пленке СР как функции ее параметров и статистических характеристик неоднородности; рассматривается возможное возникновение в СР под действием случайных электрических полей от крупномасштабных заряженных дефектов неоднородных ПО, в каждой из которых возможно существование нескольких типов метастабильных полярных состояний.

В параграфе 8.1 вначале приведены имеющиеся данные по эксперименобнаружению наноразмерных ПО. Рассчитано $\Delta T_{\scriptscriptstyle d} = T_{\scriptscriptstyle d} - \Theta$ температуры Бернса $T_{\scriptscriptstyle d}$ относительно математического ожидания Θ случайной функции $T_C(\vec{r})$ – локальных температур $\Phi\Pi$ для CP, представляющего собой возможный набор однородно распределенных прямоугольных, параболических и сферических «потенциальных ям», в зависимости от их параметров: высоты с локального температурного максимума, кривизны b в точке максимума, размера l области структурной неоднородности. Для ΠO размером L>>l, содержащей область неоднородности со свободной энергией вида (16) при $\vec{E} = \vec{E}_{ext} = 0$ без учета слагаемого $\sim P^4$ вблизи точки $\Phi\Pi$, в случае $\alpha_s \to \infty$ после варьирования имеем уравнения равновесия $\kappa\!\Delta\!P + \alpha_{\scriptscriptstyle 0} (T_{\scriptscriptstyle C} - T) P = 0$ с переменной $T_{\scriptscriptstyle C} (\vec{r})$ (внутри области) и постоянной $T_{\scriptscriptstyle C}$ (вне области) локальной температурой Кюри. Естественные условия максимума поляризации в центре ПО и отсутствия поляризации вне ПО вместе с условиями гладкой сшивки поляризации на границе области структурной неоднородности образуют ОСЛУ относительно констант интегрирования. Равенство нулю ее детерминанта определяет смещение ΔT_d температуры Бернса (рис. 20). При изменении формы «потенциальной ямы» (прямоугольная→

параболическая \to сферическая) нелинейность функции $\Delta T_d(c)$ усиливается, рост функций $\Delta T_d(l)$ ослабевает, значения T_d смещаются вниз по температуре. С учетом размерного фактора определена температура T_g «замораживания» ПО, выше которой возможна смена ориентации поляризации при сравнивании тепловой энергии со свободной энергией. Показано, что температурная зависимость последней дает возможность применять формулу Аррениуса для описания диэлектрической релаксации при температурах $T>T_g$.

Рис. 20. Зависимости смещения температуры Бернса ΔT_d от высоты c локального максимума (а) и от нормированного размера l/a (б) для сферического распределения $T_c(\vec{r})$

В параграфе 8.2 сначала описаны имеющиеся «диполь-стекольные» представления в теории СР. Затем рассмотрено влияние крупномасштабных дефектов, индуцирующих случайные электрические поля, на свойства СР. Дефект моделируется локальным распределением напряженности электрического поля вида $\vec{E}_{ext} = \vec{E}_0 \exp\left(-\rho^2/\rho_0^2\right)$, где \vec{E}_0 – напряженность электрического поля в центре дефекта, ρ_0 – радиус дефекта. Образованная варьированием свободной энергии вида (16) система уравнений решалась численно методом конечных элементов. Для СР, содержащем ПО с параметрами ТГС радиусом R=50 Å при $\rho_0=5$ Å, $E_0=P_\infty^{(0)}$ обнаружено 4 доменоподобных полярных состояния, где интенсивность перехода λ_{ii} из j-го в i-ое состояние определялась разностью ΔF_{ii} их свободных энергий: $\lambda_{ii} = F_0 \exp(-\Delta F_{ii}/(k_B T))$. Такая смена полярных состояний в силу действия случайных факторов существенно изменяет профиль поляризации, что равносильно ФП и сопровождается появлением максимумов на температурной зависимости диэлектрической проницаемости, что должно усиливать «размытие» термодинамических свойств СР. На основе теории марковских цепей предложен метод определения поляризации и диэлектрической проницаемости в СР.

<u>В параграфе 8.3</u> сделаны оценки температуры ФП и ширины области температурного размытия ФП для пленки СР с вектором поляризации, парал-

лельным ее плоскости, как функция ее параметров при стохастичности $T_C(\vec{r})$ в плоскости и по толщине пленки в зависимости от стохастичности амплитуды отклонения температуры $\Phi\Pi$ от T_C , размера области неоднородности, параметра α_s на границе пленки. Температура $\Phi\Pi$ при структурном разупорядочении в плоскости пленки СР существенно выше, чем в случае разупорядочения по толщине пленки при одинаковых других параметрах материалов.

В заключении сформулированы основные результаты и выводы, которые состоят в следующем:

- 1. Показано, что в ограниченных образцах сегнетоэлектриков и сегнетоэластиков температура фазового перехода смещается, в отличие от полуограниченных кристаллов, где меняется только распределение параметра порядка η вблизи температуры Кюри и его температурная зависимость. Определены основные факторы, влияющие на температуру фазового перехода и термодинамические характеристики (свободная энергия, теплоемкость, восприимчивость) в тонких сегнетоэлектрических и сегнетоэластических пленках, тонкопленочных структурах сегнетоэлектрик-диэлектрик, тонких сегнетоэлектрических и сегнетоэластических стержнях круглого и прямоугольного сечения, сегнетоэлектрических наночастицах сферической и эллипсоидальной формы, а именно: толщина пленки и сечения стержня, диаметр наночастицы; форма сечения стержня и наночастицы; свойства поверхности, определяемые параметром α_s ($\alpha_s \eta^2/2$ – удельная поверхностная энергия). Смещение ΔT температуры фазового перехода ограниченного образца относительно температуры Кюри объемного кристалла растет с уменьшением его размера и увеличением параметра $|\alpha_s|$, причем $\Delta T > 0$ в случае $\alpha_s > 0$ и $\Delta T < 0$ в случае $\alpha_s < 0$. Критический размер образца, ниже которого невозможен фазовый переход, растет с увеличением параметра $\alpha_s > 0$. Подобное поведение температуры перехода также имеет место в случае структурных фазовых переходов, не сопровождающихся возникновением дальнодействующих полей, а также в случае фазовых переходов из однородного в неоднородное магнитное состояние в ферромагнетиках.
- 2. Установлено, что в тонких сегнетоэлектрических пленках толщиной выше некоторого значения, определяемого материалом пленки, при охлаждении из парафазы по достижении некоторой температуры T_{fh} происходит переход в неоднородное доменоподобное состояние, предшествующее однородному в плоскости пленки полярному состоянию с температурой T_f фазового перехода, причем $T_f < T_{fh} < T_C$ ($\alpha_s > 0$) и $T_C < T_f < T_{fh}$ ($\alpha_s < 0$). Если $\alpha_s < 0$, то с увеличением $|\alpha_s|$ влияние поверхности растет и выше некоторого значения ($|\alpha_s| = 0.4$ ML для пленки ТГС) температура T_{fh} практически перестает зависеть от толщины l пленки поверхность «затягивает» фазовый переход в высокотемпературную область и полностью контролирует наличие полярного

состояния. При $\alpha_s < 0$ ширина интервала $\Delta T = T_{fh} - T_f$ существования неоднородной фазы меньше, чем в случае $\alpha_s > 0$. Снижение температуры T_{fh} за счет экранирования зарядов на поверхности пленки незначительно (~2.5 К для пленки ТГС l=10 ML, $|\alpha_s|=0.25$ ML).

- 3. Спрогнозировано смещение $\Delta T = \left|T_f T_f^h\right|$ температуры T_f^h структурного фазового перехода в тонких сегнетоэлектрических пленках при приложении вдоль полярной оси достаточно слабого внешнего поля E_{ext} ($E_{ext} << 8\pi^3 \sqrt{\kappa^3} / \left(l^3 \sqrt{\beta}\right)$, где κ корреляционная постоянная, β коэффициент перед $P^4/4$ в разложении Ландау свободной энергии по поляризации). С уменьшением толщины и увеличением энергии поверхности пленки смещение ΔT растет. В случае экранирования зарядов на поверхности пленки смещение ΔT возрастает (примерно на 15 К при l=10 ML, α_s =1 ML для пленки ТГС) и усиливается с ростом параметра α_s .
- 4. Построена теория продольного магнитоэлектрического эффекта в двухслойной структуре ферромагнетик-пьезоэлектрик. Показано, что точный учет электрических полей приводит к заметному смещению ее собственных частот в высокочастотную область. Так относительное изменение наинизшей собственной частоты v_0 для структуры никель/цирконат-титанат свинца при постоянной толщине магнитострикционного слоя l_m =1 мм изменяется от 53% до 60% соответственно при изменении толщины пьезослоя l_n от 5 мм до 0.05 мм. Дисперсия колебательных мод в случае неоднородных в плоскости структуры колебаний приводит к дополнительному смещению собственных частот (достигает 8% при l_m =0.5 мм и l_p =5 мм) и максимумов на частотной зависимости коэффициента магнитоэлектрической связи в сторону высоких частот. Произведен учет диссипации энергии на резонансных частотах и дана оценка максимальных значений коэффициента магнитоэлектрического эффекта. Рассчитанная зависимость собственной частоты от длины структуры никель/цирконат-титанат свинца с естественными граничными условиями на ее концах хорошо согласуется с экспериментом.
- 5. Найдены спектры собственных частот и разрешенных времен релаксации $\{\tau_n\}$ при охлаждении из парафазы до температуры T_f фазового перехода тонких сегнетоэлектрических пленок с параллельным и перпендикулярным расположением полярной оси к плоскости пленки. В обоих случаях температурные зависимости $\tau_n^{-1}(T)$ носят линейный характер, величина $\tau_1^{-1}(T)$ в точке T_f обращается в нуль при любых параметрах пленки. Присутствие деполяризующих полей смещает зависимости $\tau_n^{-1}(T)$ вверх вдоль оси ординат (для пленки ТГС собственные электрические поля ускоряют диэлектрическую релаксацию примерно в 3 раза). Определен спектр времен релаксации ансамбля сегнетоэлектрических частиц. Для данной системы вклад наиболь-

шего времени релаксации в среднее время релаксации монотонно возрастает с увеличением количества ее частиц. Скорость релаксации поляризации на начальной стадии (в течение времени, равного обратной частоте переключения поляризации в частице) контролируется количеством частиц в ансамбле.

- 6. Рассчитана форма зародыша обратного домена в тонкой сегнетоэлектрической пленке в достаточно слабом электрическом поле (влиянием на профиль поляризации можно пренебречь). Найден критический размер L_{cr} зародыша, способного расти за счет движения доменных границ, в зависимости от толщины пленки, параметра α_s на ее границах, напряженности внешнего электрического поля E_{ext} , температуры (для пленки ТГС $L_{cr} \sim 7$ МL при $T=100~{\rm K},~E_{ext} \sim 0.01 P_{\infty}$). Определен кроссовер перехода от однородного переключения поляризации к неоднородному при некотором критическом значении параметра $\alpha_s^{cr}=f\left(l,E_{ext},T\right)$ на границах пленки. В рамках кинетической теории Зельдовича роста зародышей найдена средняя скорость $\left\langle dP/dt\right\rangle = f\left(l,\alpha_s,E_{ext},T\right)$ переключения поляризации пленки.
- 7. Разработана общая схема исследования и прогнозирования физических свойств материалов с размытым фазовым переходом, включающая модель «случайная температура», модель «случайное поле», учитывающую крупномасштабные флуктуации электрических полей, связанных с дефектной структурой материала, и позволяющая определить основные факторы, влияющие на формирование свойств этих материалов модуля амплитуды флуктуации локальной температуры фазового перехода, электрического поля, геометрических размеров флуктуационных областей и установить зависимость температурной ширины области размытия от статистических мер перечисленных факторов.
- 8. Применительно к исследованию и прогнозированию физических свойств тонких пленок сегнеторелаксоров сформулирован метод стохастических дифференциальных уравнений и определена методика его применения. Для температуры фазового перехода как случайной функции структурных параметров материала найдены математическое ожидание, дисперсия, отвечающие за размытие перехода.

Полученные в работе результаты могут быть использованы научными работниками, инженерами-исследователями, разработчиками новых материалов в качестве научно-методических основ поддержки выработки оптимальных решений по их созданию. Дальнейшее развитие теории в выбранном направлении позволит перейти от полуколичественных рекомендаций на данном этапе развития к количественным.

Список цитируемой литературы

1. Bastani, Y. Critical thickness for extrinsic contributions to the dielectric and piezoelectric response in lead zirconate titanate ultrathin films / Y. Bastani, T.

- Schmitz-Kempen, A. Roelofs, and N. Bassiri-Gharb // Journal of Applied Physics. –2011. V. 109. P. 014115–8 p.
- 2. Jensen, P.J. Magnetic structure of films: Dependence on anisotropy and atomic morphology / P.J. Jensen, K.H. Bennemann // Surface Science Reports. -2006.-V.61.-P.129-199.
- 3. Jalalian, A. Large piezoelectric coefficient and ferroelectric nanodomain switching in $Ba(Ti_{0.80}Zr_{0.20})O_3$ -0.5($Ba_{0.70}Ca_{0.30}$)TiO₃ nanofibers and thin films / A. Jalalian, A.M. Grishin, X.L. Wang, Z.X. Cheng, and S.X. Dou // Applied Physics Letters. 2014. V. 104. P. 103112–5 p.
- 4. Cowley, R.A. Relaxing with relaxors: a review of relaxor ferroelectrics / R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, and G.M. Rotaru // Advances in Physics 2011. V. 60, № 2. P. 229–327.
- 5. Абдуллаев, Д.А. Сегнетоэлектрическая память: современное производство и исследования / Д.А. Абдуллаев, Р.А. Милованов, Р.Л. Волков, Н.И, Боргардт, А.Н, Ланцев, К.А. Воротилов, А.С. Сигов // Российский технологический журнал. -2020. Т. 8, №5. С. 44–67.
- 6. Hirohata, A. Review on spintronics: Principles and device applications / A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, and B. Hillebrands // Journal of Magnetism and Magnetic Materials. 2020. V. 509. P. 166711–81 p.
- 7. Liang, X. Magnetoelectric materials and devices / X. Liang, H. Chen, and N.X. Sun // APL Materials. -2021. V. 9. P. 041114-28 p.
- 8. Wang, W. Advancing versatile ferroelectric materials toward biomedical applications / W. Wang, J. Li, H. Liu, and S. Ge // Advanced Science. 2020. V. 8, N 1 P. 2003074–27 p.
- 9. Треффц, Е. Математическая теория упругости / Е. Треффц Л.–М.: ОНТИ ГТТИ, 1934. 172 с.
- 10. Андреев, А.Ф. Стрикционные сверхструктуры в двумерном фазовом переходе / А.Ф. Андреев // Письма в Журнал экспериментальной и теоретической физики. -1980. -T. 32, №11. -C. 654–656.
- 11. Филиппов, Д.А. Магнитоэлектрический эффект в двухслойной магнитострикционно-пьезоэлектрической структуре / Д.А. Филиппов, В.М. Лалетин, Т.А. Galichyan // Физика твердого тела. 2013. Т. 55, вып. 9. С. 1728–1733.

Список основных публикаций по теме диссертации

- 1. Nechaev, V.N. Domain structure of thin ferroelectric-ferroelastic films / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2003. V. 307. P. 53–58.
- 2. Нечаев, В.Н. О диэлектрической проницаемости сегнетоэлектриков с размытым фазовым переходом/ В.Н. Нечаев, А.В. Шуба // Известия РАН. Серия физическая. 2006. Т. 70, № 8. С. 1141—1144.

- 3. Нечаев, В.Н. Размытые фазовые переходы в сегнетоэлектриках. Учёт высших степеней в разложении свободной энергии / В.Н. Нечаев, А.В. Шуба // Вестник ВГТУ. -2006. Т. 2, № 8. С. 29–30.
- 4. Нечаев, В.Н. Размытые фазовые переходы в сегнетоэлектриках. Учёт влияния электрических полей / В.Н. Нечаев, А.В. Шуба // Вестник ВГТУ. -2006. Т. 2, № 8. С. 31–33.
- 5. Nechaev, V.N. Nonuniform states of ferroelastic film near the Curie temperature / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2007. V. 359. P. 35–40.
- 6. Нечаев, В.Н. О фазовом переходе в тонкой сегнетоэластической пленке / В.Н. Нечаев, А.В. Шуба // Известия РАН. Серия физическая. -2007. Т. 71, № 10. С. 1403-1405.
- 7. Нечаев, В.Н. Зависимость периода полосовой доменной структуры от толщины сегнетоэлектрической плёнки // В.Н. Нечаев, А.В. Шуба // Вестник ВГТУ. -2007. -T. 3, № 8. -C. 49-52.
- 8. Нечаев, В.Н. О диэлектрической проницаемости многослойных сегнетоэлектрических пленок. В.Н. Нечаев, А.В. Шуба // Известия РАН. Серия физическая. – 2008. – Т. 72, № 9. – С. 1298–1301.
- 9. Нечаев, В.Н. Моделирование нанокомпозитных систем сегнетоэлектрик-диэлектрик / В.Н. Нечаев, А.В. Шуба // Системы управления и информационные технологии. 2009. №3.2(37). С. 271–276.
- 10. Nechaev, V.N. Modeling of ferroelectric-dielectric nanocomposites / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2010. V. 397. P. 32–42.
- 11. Нечаев, В.Н. Роль размерных эффектов в формировании свойств гетерогенных сегнетоактивных систем / В.Н. Нечаев, А.В. Шуба, А.В. Висковатых // Известия РАН. Серия физическая. 2010. Т. 74, № 9. С. 1273–1276.
- 12. Нечаев, В.Н. Моделирование многослойных сегнетоэлектрических пленок. В.Н. Нечаев, А.В. Шуба // Наукоемкие технологии. -2010. Т. 11, № 12. С. 47–53.
- 13. Нечаев, В.Н. Роль размерных эффектов в формировании особенностей фазовых переходов в гетерогенных сегнетоактивных системах. В.Н. Нечаев, А.В. Шуба // Наукоемкие технологии. 2011. Т. 12, № 1. С. 10–14.
- 14. Нечаев, В.Н. Математическое моделирование термодинамических характеристик сегнетоэлектрических образцов малых размеров / В.Н. Нечаев, А.В. Шуба // Вестник ВГТУ. 2011. Т. 7, N 6. С. 147–151.
- 15. Nechaev, V.N. Mechanical stress influence on the phase transition in low-diminsional ferroelastics/ V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2013. V. 444. P. 18–25.
- 16. Нечаев, В.Н. О возможном механизме повышения температуры фазового перехода в композите сегнетоэлектрик-диэлектрик / В.Н. Нечаев, А.В. Шуба // Физика твердого тела. 2014. Т. 56, вып. 5. С. 949–952.
- 17. Нечаев, В.Н. Особенности фазового перехода в двумерных сегнетоэласти-ках // В.Н. Нечаев, А.В. Шуба // Вестник ВГТУ. 2014. Т. 10, № 1. С. 12–15.

- 18. Нечаев, В.Н. О параметрах, определяющих особенности фазовых переходов в композиционных материалах / В.Н. Нечаев, А.В. Шуба, А.В. Висковатых // Известия вузов. Физика. 2015. Т. 58, № 5. С. 114–119.
- 19. Nechaev, V.N. The theory of direct magnetoelectric effect in the bilayer system of ferromagnetic-piezoelectric / V.N. Nechaev and A.V. Shuba // Journal of Advanced Dielectrics. -2016. V. 6, No. 1. P. 1650005-6 p.
- 20. Nechaev, V.N. Size effects in a thin ferroelastic rod / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2016. V. 501. P. 32–38.
- 21. Нечаев, В.Н. О неоднородных поляризованных состояниях вблизи точки фазового перехода в тонкой сегнетоэлектрической пленке / В.Н. Нечаев, А.В. Шуба // Физика твердого тела. 2018. Т. 60, вып. 7. С. 1322–1327.
- 22. Nechaev, V.N Nonuniform polarized states of ferroelectric nanoparticles in a dielectric matrix / V.N. Nechaev, A.V. Viskovatych, and A.V. Shuba // IOP Conference Series: Materials Science and Engineering. 2019. V. 525. P. 012009–10 p.
- 23. Нечаев, В.Н. Особенности фазового перехода в тонком сегнетоэластическом стержне / В.Н. Нечаев, А.В. Шуба // Известия РАН. Серия физическая.— 2019. Т. 83, N 9. С. 1174—1178.
- 24. Nechaev, V.N. Stochastic model of relaxors / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2019. V. 543. P. 67–74.
- 25. Нечаев, В.Н. Об аномальном влиянии внешнего электрического поля на фазовый переход второго рода в тонкой сегнетоэлектрической пленке / В.Н. Нечаев, А.В. Шуба // Физика твердого тела. 2020. Т. 62, вып. 4. С. 567–573.
- 26. Nechaev, V.N. Influence of external electric field on phase transitions in the thin film ferroelectrics / V.N. Nechaev and A.V. Shuba // Ferroelectrics. -2020. V. 561. P. 106–113.
- 27. Nechaev, V.N. Influence of dissipative properties on the magnetoelectric coefficient in bilayer films / V.N. Nechaev and A.V. Shuba // Ferroelectrics. 2020. V. 561. P. 27–35.
- 28. Нечаев, В.Н. О магнитоэлектрическом эффекте в двухслойной системе ферромагнетик-пьезоэлектрик / В.Н. Нечаев, А.В. Шуба // Известия вузов. Физика. -2020. -T. 63, № 9. -C. 15-25.
- 29. Nechaev, V.N. Spectrum of relaxation times of polarization in thin film ferroelectrics near the phase transition point / V.N. Nechaev and A.V. Shuba // Ferroelectrics. -2020.-V.561.-P.120-126.
- 30. Nechaev, V.N. Predicting properties of ferroelectric relaxors based on stochastic models / V.N. Nechaev and A.V. Shuba // Ferroelectrics. -2020. V. 567. P. 121–131.
- 31. Нечаев, В.Н. Спектр времен релаксации в ансамбле суперпараэлектрических частиц / В.Н. Нечаев, А.В. Шуба // Вестник ДГУ. Серия 1. Естественные науки. 2020. Т. 35, вып. 3. С. 63–70.
- 32. Нечаев, В.Н. Современные феноменологические модели сегнеторелаксоров: монография / В.Н. Нечаев, А.В. Шуба. Воронеж: Издательский дом ВГУ, 2021. 83 с.

Подписано в печать 28.12.2021. Формат $60 \times 84/16$. Бумага для множительных аппаратов. Усл. печ. л. 2,0. Тираж 100 экз. Заказ № 176. ФГБОУ ВО «Воронежский государственный технический университет» 394026, Воронеж, Московский просп., 14