Кузнецова Ирина Владимировна

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ДИАГНОСТИКА ВОЗБУДИТЕЛЕЙ ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ (НА ПРИМЕРЕ МАССОВЫХ МЕРОПРИЯТИЙ В 2014-2019 ГГ. В Г. СОЧИ)

1.5.11 – микробиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Федеральном казенном учреждении здравоохранения «Ставропольский научно-исследовательский противочумный институт» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Научный руководитель:

член-корреспондент РАН, доктор медицинских наук, профессор

Куличенко Александр Николаевич

Официальные оппоненты:

Чеснокова Маргарита Валентиновна, доктор медицинских наук, профессор, заведующая отделом научного и учебно-методического обеспечения, Федеральное казенное учреждение здравоохранения «Иркутский ордена Трудового Красного Знамени научно-исследовательский противочумный институт Сибири и Дальнего Востока» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Мавзютов Айрат Радикович, доктор медицинских наук, профессор, заведующий кафедрой фундаментальной и прикладной микробиологии, Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Ведущая организация:

Федеральное казенное учреждение здравоохранения «Ростовский-на-Дону ордена Трудового Красного Знамени научно-исследовательский противочумный институт» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

Защита диссертации состоится «»	года в часов на
заседании диссертационного совета 64.1.006.01 по	защите диссертаций на
соискание ученой степени кандидата наук, на соискани	ие ученой степени доктора
наук при ФКУЗ «Российский научно-исследовательский	<mark>и противочумный институт</mark>
«Микроб» Роспотребнадзора (410005, г. Саратов, ул. Унг	иверситетская, д. 46).

С диссертацией можно ознакомиться в библиотеке и на сайте http://www.microbe.ru/disser/dissert/ Российского научно-исследовательского противочумного института «Микроб».

Авторе	фер	рат	разослан	<<	>>	 Γ	١.

Ученый секретарь диссертационного совета, доктор медицинских наук

Бугоркова Светлана Александровна

ВВЕДЕНИЕ

Актуальность исследования и степень разработанности

Использование комплексного микробиологического анализа штаммов патогенов, установление их филогенетического положения, получение данных о генетических особенностях изолятов и определение фоновых генотипов возбудителей инфекций на конкретных территориях — важное звено в противодействии биологическим угрозам, в том числе в период проведения массовых мероприятий.

В период проведения крупных международных массовых мероприятий повышается угроза возникновения и распространения инфекционных заболеваний. Это подтверждается, например, вспышкой гриппа во время XIX зимних Олимпийских игр 2002 года в Солт-Лейк-Сити [Gundlapalli A., 2006], норовирусной инфекции на чемпионате мира по футболу 2006 года в Мюнхене [Schenkel K., 2006], менингококковой инфекции во время хаджа в Саудовской Аравии [Shafi S., 2008], норовирусной инфекции в период XXIII зимних Олимпийских игр 2018 года в Пхенчхане [КСDС, 2018].

В настоящее время одним из наиболее важных направлений предупреждения и ликвидации вспышек инфекционных заболеваний является применение современных технологий эпидемиологического мониторинга за возбудителями и эффективная диагностика инфекции, основанная на применении современных молекулярно-генетических методов исследования [WHO/EURO, 2007; Abubakar I., 2012; Онищенко Г.Г., 2014; Tabatabaei S.M., 2015; Онищенко Г.Г., 2015].

C целью повышения готовности К возможным осложнениям эпидемиологической ситуации во время важных общественных событий в Российской Федерации привлекаются дополнительные силы и средства, например, специализированные противоэпидемические бригады (СПЭБ) Роспотребнадзора [Онищенко Г.Г., 2014]. В настоящее время накоплен значительный опыт интегрирования СПЭБ в деятельность санитарно-эпидемиологической службы регионов, в том числе с целью проведения микробиологических и молекулярногенетических исследований. Важно, основываясь на имеющихся данных об особенностях генома, выбрать наиболее результативный метод генетического анализа в условиях работы СПЭБ, применительно к разным видам бактерий и вирусов.

Впервые для участия в обеспечении массового мероприятия СПЭБ была форума Азиатско-Тихоокеанского экономического задействована во время сотрудничества (АТЭС) 2012 года в г. Владивостоке, итоги этой работы представлены в монографии под редакцией Г.Г. Онищенко (2013). Новые научно-практические организационные санитарно-И подходы противоэпидемического обеспечения массового мероприятия с участием СПЭБ были разработаны и реализованы во время Универсиады-2013 в г. Казани и Олимпиады-2014 в г. Сочи, что нашло отражение в коллективных монографиях под редакцией Г.Г. Онищенко и В.В. Кутырева (2013, 2014), под редакцией Г.Г. Онищенко и А.Н. Куличенко (2015), а также в диссертационных работах С.К. Удовиченко Патяшиной (2015), (2014),М.И. В.Γ. Оробея (2016),Т.В. Гречаной (2016), О.В. Тушиной (2017).

С учетом полученного в последние несколько лет опыта проводятся исследования, направленные на совершенствование нормативно-методической

базы, материально-технического оснащения, алгоритмов лабораторной диагностики и изучения ПБА, обеспечения безопасности работ в условиях СПЭБ [А.Ю. Попова и др., 2014; Е.В. Найденова и др., 2014; Е.С. Казакова и др., 2014; И.Г. Карнаухов и др., 2016].

В настоящее время в методических документах прописано применение только одного метода генетического анализа, полимеразной цепной реакции (ПЦР), для лабораторной диагностики инфекционных болезней и лабораторного контроля объектов окружающей среды при проведении массовых мероприятий, в том числе при работе СПЭБ [МР 4.2.0079/1—13]. Проведение молекулярного типирования штаммов (изолятов нуклеиновых кислот) возбудителей инфекционных болезней не регламентировано. В связи с этим, разработка и реализация научно обоснованных алгоритмов лабораторной диагностики и генотипирования позволит в целом усовершенствовать лабораторно-диагностическую составляющую работы СПЭБ, изложенную в «Регламенте (стандарте) функционирования специализированных противоэпидемических бригад (СПЭБ) при ликвидации медико-санитарных последствий чрезвычайных ситуаций природного и техногенного характера» (утв. приказом Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека № 330 от 22.11.2007).

Изучение особенностей выполнения микробиологического анализа в общей структуре санитарно-противоэпидемического обеспечения массовых мероприятий 2014-2019 гг. в г. Сочи дает возможность выделить и проанализировать ключевые направления для выработки предложений по совершенствованию алгоритмов молекулярной диагностики и генотипирования возбудителей инфекций и организации работы лабораторной базы при обеспечении эпидемиологического благополучия в период массовых мероприятий. Данный опыт будет востребован в дальнейшем при организации санитарно-эпидемиологического обеспечения массовых мероприятий, как в России, так и за рубежом. Вышеизложенное определяет актуальность цели и задач данной диссертационной работы.

Цель исследования — разработать и апробировать алгоритм комплексного генетического анализа для выявления и характеристики возбудителей инфекционных болезней на примере работы СПЭБ в период подготовки и проведения крупных массовых мероприятий.

Задачи исследования:

- 1. Провести молекулярно-генетический мониторинг за циркуляцией на территории г. Сочи штаммов возбудителей природно-очаговых и острых кишечных инфекций с целью получения информации о характерных для региона генетических вариантах (геномное профилирование ПБА территории) в период подготовки к чемпионату мира по футболу FIFA 2018.
- 2. На основе учета особенностей генома штаммов патогенов и существующей методической базы оптимизировать алгоритм генетического анализа для решения эпидемиологических задач.
- 3. Разработать порядок укомплектования СПЭБ Роспотребнадзора генодиагностическими препаратами для работы в рамках решения задач лабораторной диагностики и генотипирования возбудителей инфекций при проведении массовых мероприятий, основанный на учете существующей методологии анализа ПБА.
- 4. Определить особенности генома штамма *Shigella sonnei*, выделенного на территории Республики Абхазия, ставшего этиологическим агентом вспышки

дизентерии в декабре 2013 г. на сопредельной с г. Сочи территории в предолимпийский период.

5. Определить особенности структуры генетических лабораторных исследований, выполненных СПЭБ Роспотребнадзора при проведении эпидемиологического надзора и профилактических мероприятий в период крупного массового международного мероприятия (на примере Олимпиады – 2014).

Научная новизна исследования

Впервые выполнено комплексное генотипирование ПБА отдельной территории Российской Федерации, получены данные генетических возбудителей особенностях региональных штаммов природно-очаговых (хантавирусы, боррелии, риккетсии группы клещевых пятнистых лихорадок (КПЛ)) и острых кишечных инфекций (Salmonella spp., рота-, норо-, астро-, аденои энтеровирусы), циркулирующих в регионе г. Сочи в заданный период.

Научно обоснован и реализован на практике алгоритм генетической характеристики ПБА, включающий 3 уровня организации исследований: І — детекция (индикация) ПБА методом ПЦР, ІІ — идентификация ключевых участков генома методом ПЦР (определение ключевых свойств ПБА, уточнение таксономического положения), ІІІа и ІІІЬ — генотипирование и секвенирование генома ПБА с учетом особенностей конкретного вида (рода) штамма патогена (филогенетический анализ, уточнение особенностей структуры генома).

С использованием предложенного алгоритма генотипирования, основанного на последовательном использовании методов генетического анализа, проведено изучение структурных особенностей генома и филогенетический анализ штамма *S. sonnei*, выделенного при вспышке острой кишечной инфекции (ОКИ) в г. Ткуарчал Республики Абхазия в ноябре 2013 г., выявлены фрагменты плазмид pBS 512 *S. boydii* и pO26-Vir *E. coli* H30, обусловившие особенности штамма.

Теоретическая и практическая значимость. Геномное профилирование ПБА территории г. Сочи позволяет, определив генетические характеристики возбудителей природно-очаговых и острых кишечных инфекций, получить данные, которые могут быть использованы при прогнозировании возникновения возможных случаев данных инфекционных болезней.

Предложены основанные на методологии генотипирования различных возбудителей инфекций алгоритмы лабораторного анализа и принципы формирования диагностической базы СПЭБ Роспотребнадзора, реализованные при участии в санитарно-противоэпидемическом обеспечении в периоды подготовки и проведения массовых мероприятий, проходивших в г. Сочи в 2014-2019 гг. (Олимпиада – 2014, Кубок конфедераций FIFA – 2017, XIX Всемирный фестиваль молодежи и студентов – 2017, чемпионат мира по футболу FIFA – 2018, саммит Россия-Африка – 2019).

С участием автора диссертации были подготовлены следующие документы:

- «Порядок лабораторного обеспечения диагностики инфекционных болезней в период проведения XXII Олимпийских зимних игр и XI Паралимпийских зимних игр 2014 г. в г. Сочи» (утвержден Руководителем Роспотребнадзора 08.09.2013);
- «Порядок лабораторного обеспечения исследований проб окружающей среды в период проведения XXII Олимпийских зимних игр и XI Паралимпийских зимних игр 2014 года в г. Сочи» (утвержден Руководителем Роспотребнадзора 08.09.2013);

- методическое пособие «Организация и порядок лабораторной диагностики инфекционных болезней в период проведения XXII Олимпийских зимних игр и XI Паралимпийских зимних игр 2014 года в г. Сочи», Ставрополь, 2014 г.;

В NCBI Genbank депонирована нуклеотидная последовательность полного генома штамма *S. sonnei* под номером SAMN09245989.

Научные и практически значимые результаты работы используются в лекционном материале для слушателей курсов повышения квалификации по «Программе подготовки личного состава специализированных противоэпидемических бригад для работы в чрезвычайных ситуациях», проводимых в ФКУЗ Ставропольский противочумный институт Роспотребнадзора.

Основные положения, выносимые на защиту.

- 1. Полученные комплексные данные о генетических профилях возбудителей природно-очаговых (хантавирусы, боррелии, риккетсии группы КПЛ) и острых кишечных инфекций (Salmonella spp., рота-, норо-, астро-, адено- и энтеровирусы) региона (г. Сочи) могут быть использованы при оперативном эпидемиологическом анализе вспышек (случаев) инфекций с целью определения источника и путей распространения инфекционного патогена.
- 2. Алгоритм генетической характеристики ПБА, включающий три уровня исследований: І детекция (индикация) ПБА методом ПЦР, ІІ идентификация ключевых участков генома методом ПЦР, ІІІа и ІІІЬ генотипирование и секвенирование генома ПБА с учетом особенностей конкретного вида (рода) штамма патогена, позволяет оптимизировать порядок генетического анализа штаммов патогенов (изолятов нуклеиновых кислот) и должен учитываться при организации работы лабораторной базы для решения задач санитарной охраны территории, в том числе при проведении массовых мероприятий.
- 3. На основании углубленного микробиологического исследования с применением последовательного алгоритма генетического анализа ПБА определены структурные особенности генома штамма *S. sonnei* (ST-152), вызвавшего крупную вспышку ОКИ на приграничной с г. Сочи территории в предолимпийский период, методом полногеномного секвенирования выявлены фрагменты плазмид pBS 512 *S. boydii* и pO26-Vir *E. coli* H30, обусловившие эпидемиологическую значимость штамма.

Степень достоверности и апробация результатов. Результаты диссертационной работы получены с использованием современного поверенного оборудования, микробиологических, генетических, эпидемиологических методов исследования с последующей компьютерной статистической обработкой данных с применением программного обеспечения Microsoft Office 2016, Microsoft Excel 2016.

Материалы диссертационной работы были представлены на региональной научно-практической конференции с международным участием «Актуальные вопросы обеспечения санитарно-эпидемиологического благополучия в Причерноморском регионе» (24-25 сентября 2013 г., г. Ставрополь), ІІ Всероссийской научно-практической конференции с международным участием «Социально-значимые и особо опасные инфекционные заболевания» (2-5 ноября 2015 г., г. Сочи), ІІ Всероссийской научно-практической конференции с международным участием «Актуальные проблемы болезней, общих для человека и животных» (5-6 апреля 2017 г., г. Ставрополь), Х Всероссийской научно-практической конференции молодых ученых и специалистов Роспотребнадзора

«Современные проблемы эпидемиологии, микробиологии и гигиены» (24–26 октября 2018 г., г. Москва), итоговых научно-практических конференциях ФКУЗ Ставропольский противочумный институт Роспотребнадзора (2015-2019 гг.).

Публикации. По теме диссертационного исследования опубликованы 2 коллективные монографии и 18 научных работ, из них 10 в периодических изданиях, рекомендованных «Перечнем ... ВАК РФ».

Структура и объем диссертации. Диссертация изложена на 138 страницах компьютерного текста, содержит 17 таблиц и 11 рисунков. Состоит из введения, обзора литературы, 4 глав собственных исследований, включающих описание материалов и методов исследований и экспериментальную часть, заключения, выводов. Список литературы содержит 210 источников, из них: 101 – отечественный и 109 – зарубежных.

Личный вклад соискателя. Материалы, использованные в диссертации, получены лично автором при участии в подготовке и работе СПЭБ Роспотребнадзора во время массовых мероприятий, проходивших в г. Сочи в 2014-2019 гг., а также в результате ретроспективного анализа этой деятельности. Отдельные результаты получены совместно co специалистами С.А. Портенко (ФКУЗ РосНИПЧИ «Микроб» Роспотребнадзора), Д.В. Ефременко (ФКУЗ Ставропольский противочумный Волынкиной Роспотребнадзора) и территориальных отделов Управления Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Краснодарскому краю В.Г. Оробеем (г. Сочи) и О.В. Тушиной (г. Геленджик).

СОДЕРЖАНИЕ РАБОТЫ

1. Материалы и методы исследований

Основными методами исследования были микробиологические, в том числе молекулярно-генетические, комплексный эпидемиологический и статистический.

В процессе работы с применением молекулярно-генетических методов исследовано 3673 пробы клинического материала и из объектов окружающей среды.

Генетическое типирование выделенного штамма *S. sonnei* осуществляли методом MLST по протоколу, описанному T. Wirth (2006).

Для генотипирования изолятов хантавирусов использовали метод прямого секвенирования фрагмента L-сегмента генома, изолятов возбудителя иксодового клещевого боррелиоза — метод мультилокусного сиквенс-типирования, изолятов *Rickettsia* spp. — прямое секвенирование нуклеотидных последовательностей фрагментов генов *atp*A, *dna*K, *glt*A, *omp*B.

Генетическую идентификацию изолятов нуклеиновых кислот ротавирусов осуществляли методом P[G] типирования с использованием специфических TaqMan зондов. Субвидовую характеристику изолятов нуклеиновых кислот (НК) норовирусов GI и GII проводили методом прямого секвенирования фрагментов генов полимеразы и нуклеокапсида вируса.

Генотипирование изолятов РНК энтеровирусов и астровирусов осуществляли методом прямого секвенирования участков гена VP1и ORF2 соответственно.

Генетическое типирование штаммов *S. enterica* (серотип *Enteritidis*) осуществляли методом MLVA по 5 локусам в соответствии с протоколом, разработанным К. Hopkins (2011).

Генотипирование выделенных штаммов легионелл выполняли с помощью метода мультилокусного секвенирования-типирования (MLST) по протоколу Европейской исследовательской группы по легионеллёзу (ESGLI) Sequence-Based Typing protocol for epidemiological typing of Legionella pneumophila, version 5.0.

Полногеномное секвенирование выполняли на генетическом анализаторе модели «Ion Torrent Personal Genome Machine» («Life technologies», США) с использованием соответствующих фрагментных библиотек (shot-gun). Выделение ДНК штамма для получения геномных библиотек проводили с применением набора для выделения геномной ДНК бактерий «Charge Switchg DNA Mini Bacteria Kit» («Invitrogen», США). Визуализацию библиотеки фрагментов нуклеиновых кислот осуществляли с использованием программного обеспечения «Experion Software» («Bio-Rad», США), оценку качества данных секвенирования проводили с помощью программы «FastQC» версия 0.11.3, фильтрацию ридов выполняли в программе «Trimmomatic» версия 0.33, для сборки генома использовалось программное обеспечение «GS De Novo Assembler v. 3.0» («Roche», США), программа «HTSeq-count v. 0.6.1» использовалась для подсчета чтений, картированных на кодирующие участки генома, для определения качества сборки и сравнительного анализа генома использовали программное обеспечение «Quast 5.0». Аннотацию генома осуществляли с помощью программного обеспечения «PROKKA» и сервера для аннотации бактериальных геномов «NCBI Prokaryotic Genome Annotation Pipeline».

Использование описательно-оценочного и ретроспективного методов эпидемиологического анализа позволило выявить представляющие наибольшую эпидемиологическую опасность инфекционные болезни, определить риски их заноса и распространения на территории проведения массовых мероприятий.

В качестве источников информации использованы официальные данные Всемирной организации здравоохранения, Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Управления Роспотребнадзора по Краснодарскому краю и ФБУЗ «Центр гигиены и эпидемиологии в Краснодарском крае», Министерства здравоохранения Республики Абхазия за 2009-2013 гг. В работе использованы отчетные документы по итогам деятельности СПЭБ Роспотребнадзора при обеспечении санитарно-эпидемиологического благополучия в период Олимпиады — 2014, Кубка конфедераций FIFA — 2017, XIX Всемирного фестиваля молодежи и студентов — 2017, чемпионата мира по футболу FIFA — 2018 и Саммита Россия-Африка — 2019.

Определение причины и условий возникновения вспышки шигеллёза в г. Ткуарчал Республики Абхазия в ноябре 2013 г. проводили на основе оперативного эпидемиологического анализа.

Статистическую обработку полученных результатов проводили общепринятыми методами, с использованием системы электронных таблиц Microsoft Excel 2016. Для относительной характеристики равномерности распределения нагрузки на лаборатории по различным направлениям деятельности определяли среднее арифметическое, моду и медиану [Савилов Е. Д. с соавт., 2004]. Текстовый и графический материал оформлен на персональном компьютере под управлением операционной системы MS Microsoft XP Professional и офисного пакета MS Office 2016.

2. Генетический мониторинг за возбудителями инфекционных болезней на территории г. Сочи в период подготовки к массовым мероприятиям.

В период подготовки к проведению чемпионата мира FIFA – 2018 на территории г. Сочи для решения задач обеспечения биологической безопасности был применен следующий алгоритм работы:

- 1) накоплены сведения о генетическом разнообразии и распространении в мире в этот период актуальных инфекций, а также патогенов, завоз которых возможен на данную территорию;
- 2) проведен молекулярно-генетический мониторинг за циркуляцией в г. Сочи штаммов возбудителей инфекций с целью получения информации о характерных для региона генетических вариантах (геномное профилирование), создание пополняемых баз данных;
- 3) обеспечена готовность к генетическому типированию патогенов для оперативного анализа при эпидемиологическом расследовании единичных и групповых случаев инфекционных заболеваний.

В результате были выявлены основные «местные» эпидемиологические риски — это наличие активных природных очагов инфекций и ведущая роль острых кишечных инфекции в структуре инфекционной заболеваемости.

В работе представлены данные о геномном профилировании изолятов нуклеиновых кислот, полученных в г. Сочи в 2015-2017 гг.

При ПЦР-исследовании на наличие РНК хантавируса 290 проб суспензий легкого грызунов и мелких млекопитающих выявлено 3 положительные пробы, установлено, что в исследуемых образцах содержатся варианты, относящиеся к хантавирусам двух видов «Добрава/Белград» и «Адлер». Выявленные генетические варианты хантавирусов характерны для территории г. Сочи, хантавирусы «Добрава/Белград» генотипа «Сочи» определяются в данном регионе с 2001 г., хантавирус «Адлер» был впервые идентифицирован в 2008 г.

С целью выявления маркеров возбудителя иксодового клещевого боррелиоза методом ПЦР исследовано 30 пулов иксодовых клещей, в 7 обнаружена РНК возбудителя. При генетическом типировании 4 изолятов НК возбудителя боррелиоза определена нуклеотидная последовательность фрагментов консервативных генов «домашнего хозяйства»: clpA, clpX, nifS, pepX, pyrG, recG, rplB, uvrA. В результате определено, что исследуемые изоляты принадлежали к двум видам боррелий: B. garinii и B. lusitaniae, выявлены новые аллельные варианты MLST локусов clpA, rplB, uvrA и 3 новых сиквенс-типа боррелий, не представленных в базе данных Borrelia MLST Databases (http://pubmlst.org/borrelia/). Популяция боррелий группы B. burgdorferii s.l. в регионе г. Сочи является частью европейской популяции данного возбудителя, о чем свидетельствует генетическое родство выявленных изолятов со штаммами из стран Европы, а также циркуляция в данном регионе *B. lusitaniae* – эндемичного вида боррелий для европейских стран.

При исследовании 32 проб сывороток крови людей и 30 пулов клещей изоляты нуклеиновых кислот *Rickettsia* spp. идентифицированы в 2 пробах клинического материала и 5 суспензий клещей. В результате методом MLST определены нуклеотидные последовательности 4 генов (*atp*A, *dna*K, *glt*A, *omp*B). Сравнение секвенированных последовательностей с данными базы GenBank с использованием алгоритма BLAST показало идентичность изолятов из клинических образцов с ДНК *R. conorii*, а клещевых изолятов – с *R. helvetica*. Этот вид риккетсий был выделен ранее из клещей *I. ricinus* и *Dermacentor reticulatus*, на территории стран Европы: Франции – 1997 г., Хорватии – 2007 г., Швеции – 2006 г. [Nilsson K., 2006.; Fournier P., 2000; Dobec M., 2009], *R. conorii* широко

распространена и встречается в странах Средиземноморья, Индии, Пакистане, России, Грузии, Израиле, Эфиопии, Кении, Южной Африке, Марокко и в Украине.

С целью выявления генетических особенностей возбудителей кишечных инфекций, циркулирующих на территории г. Сочи в 2015–2017 гг., проводили молекулярно-генетический анализ штаммов и изолятов НК патогенов, выявленных в образцах клинического материала – исследовано 630 проб фекалий от больных с диагнозом «острая кишечная инфекция», возбудители ОКИ или/и их маркеры были определены в 223 пробах.

Установлено, что идентифицированные варианты ротавирусов принадлежат к 7 генотипам G9[P]8, G4[P]8, G9[P]6, G4[P]6, G2[P]4, G1[P8], G3[P8]. Соотношение генетических вариантов ротавирусов в популяции г. Сочи в 2015-2017 гг. отличалось от других регионов РФ, на исследуемой территории преобладали генотипы G9[P]8 и G4[P]8, а в России доминировал генотип ротавирусов G1[P8].

Среди норовирусов II генотипа в регионе г. Сочи определено 4 генетических варианта: GII.P17-GII.17; GII.P4 New_Orlean_2009-GII.4 Sydney_2012; GII.Pe—GII.4 Sydney_2012; GII.P21-GII.3. Генетические варианты норовирусов GII.P4 New_Orlean_2009-GII.4 Sydney_2012 и GII.Pe—GII.4 Sydney_2012, выявленные на исследуемой территории, являются доминирующими в мире с 1990 г. и обладают наибольшим эпидемическим потенциалом. Штаммы с генотипом GII.P17-GII.17 в течение последних 30 лет выявлялись в мире спорадически, а с зимы 2014—2015 гг. широко распространились в странах Азии с вытеснением ранее доминировавшего генотипа GII.4 Sydney 2012.

Единичные случаи заболевания ОКИ были вызваны *S. enterica* с идентичным MLVA-профилем 3-10-5-4-1, астровирусами генотипов HAstV-4 и HAstV-1 и энтеровирусами генотипов Коксаки A4 и Коксаки A19.

В результате проведенной работы впервые осуществлена комплексная молекулярно-генетическая характеристика изолятов НК возбудителей острых кишечных и природно-очаговых инфекций, циркулирующих в регионе г. Сочи. На основании результатов генетической идентификации исследуемых изолятов проведена оценка их эпидемиологической значимости и определены особенности региональных популяций возбудителей, что позволило создать базу генетических профилей возбудителей природно-очаговых и острых кишечных инфекций, циркулирующих на данной территории в этот период, для эпидемиологического анализа возможных вспышек заболеваний людей при проведении чемпионата мира по футболу FIFA-2018 г. Сочи.

3. Алгоритм генетической характеристики ПБА в условиях работы СПЭБ Роспотребнадзора

В системе реагирования на эпидемиологические угрозы особое значение имеет комплекс организационных и диагностических мероприятий, направленных на раннее выявление возбудителя инфекции и принятие адекватных мер в случае возможных осложнений эпидемиологической ситуации. При этом обоснованно используются оптимизированные лабораторной диагностики схемы приоритетным применением метода ПЦР в реальном времени, обладающим высокими показателями диагностической чувствительности и специфичности, и, при необходимости, возможностью анализа патогена на молекулярно-генетическом Возможности анализа (ПЦР, методов генетического генотипирования) предполагают наличие алгоритма их комплексного

последовательного использования, исходя из решаемых задач. В первую очередь порядок последовательного использования методов генетического анализа представляет актуальность для работы диагностических лабораторий СПЭБ Роспотребнадзора, которые привлекается с целью усиления лабораторной сети региона, а так же Центров индикации возбудителей инфекционных болезней І-ІІ групп патогенности и обеспечения противоэпидемической готовности.

В период подготовки к проведению массовых мероприятий с целью формирования диагностической базы, включающей лабораторное оборудование, диагностические наборы и расходные материалы, использован следующий порядок, основанный на последовательном определении перечня актуальных патогенов и схемы анализа для каждого вида возбудителя. Лабораторные исследования проводятся в соответствии с многофакторным трехуровневым алгоритмом генетического анализа, адаптированным для ПБА бактериальной и вирусной природы и позволяющим обеспечить их оперативное выявление и характеристику.

Проведение генетического анализа по І уровню предполагает детекцию (индикацию) возбудителя методом ПЦР. Исследования проводятся при осуществлении планового мониторинга объектов окружающей среды, а также при скрининговом обследовании на наличие возбудителей инфекций различных клиентских групп. В случае обнаружения патогена, при необходимости (в зависимости от поставленных задач), положительные пробы передаются для дальнейшего изучения ПБА в соответствии со ІІ и (или) ІІІ уровнями.

При всем многообразии методик, применяемых для генотипирования штаммов патогенов, отсутствует унифицированный подход для их выбора и использования в эпидемиологических целях.

На основании проведенной по ключевым параметрам сравнительной характеристики методы генетического анализа, наиболее часто применяемые при решении эпидемиологических задач, разделены на 3 группы:

- методы определения специфичных участков генома штамма патогена;
- MLVA, MLST, SNP, фрагментарное секвенирование по Сэнгеру и др.;
- полногеномное секвенирование.

Предлагается применять в работе СПЭБ основанный на особенностях генома патогенов следующий структурированный подход (алгоритм) использования методов генетического анализа для характеристики возбудителей инфекций и решения эпидемиологических задач в зависимости от конкретного патогена и целей исследования:

- 1) идентификационная ПЦР определение специфичных участков генома штамма патогена, которые обеспечивают внутривидовую дифференциацию ПБА, определение его эпидемиологической значимости на генетическом уровне;
- 2) основной метод генотипирования применяется один из методов (MLVA, MLST, SNP-типирование, фрагментарное секвенирование по Сэнгеру и др.) для выявления особенностей структурной организации участков генома ПБА, различий между отдельными штаммами, определения их принадлежности к внутривидовой группе или природному очагу;
- 3) дополнительный метод генотипирования применяется второй уточняющий метод (MLVA, MLST, SNP-типирование, фрагментарное секвенирование по Сэнгеру и др.) или проводится полногеномное секвенирование для более глубокого изучения генома.

Генотипирование ПБА с целью установления его филогенетического положения и уточнения особенностей структуры генома (III уровень генетического анализа) осуществляется при необходимости решения следующих задач:

- уточнение таксономического положения штамма;
- определение пространственного и временного происхождения штамма;
- расследование генеза вспышки, установление источника инфекции, возможных маршрутов заноса и т.д.;
 - выявление генетически модифицированных штаммов.

Выбор основного и дополнительного метода генотипирования определяется с учетом наличия методической базы для каждого патогена. Вопрос об обособленном или комбинированном использовании идентификационной ПЦР, основного и дополнительного методов генетического типирования решается в зависимости от изучаемого патогена и конкретной ситуации (рисунок 1).

	детекция (индикация) ПБА методом ПЦР
II	идентификация фрагментов генома ПБА методом ПЦР (определение ключевых свойств ПБА, уточнение таксономического положения)
III	генотипирование ПБА (использование основного метода генотипирования, филогенетический анализ)
IIII	генотипирование ПБА, полногеномное секвенирование* (использование дополнительного метода генотипирования, уточнение особенностей структуры генома)

* Выполняется в условиях стационарной лаборатории Рисунок 1 – Алгоритм генетической характеристики ПБА

Например, в результате анализа эпидемиологических рисков, с учетом особенностей массового мероприятия, в период подготовки к проведению Олимпиады-2014, был определен перечень актуальных инфекций, в соответствии с которым СПЭБ была оснащена диагностическими препаратами, позволяющими проводить исследования по I уровню на наличие 82 различных патогенов.

Для выполнения анализов по II и III уровню в условиях работы СПЭБ на подготовительном этапе был определен перечень патогенов, представляющих наибольшие эпидемиологические угрозы, для каждого вида возбудителя выбрана методика генотипирования и синтезированы праймеры. Список ПБА и методики генотипирования представлены в разделе 4.

С целью проведения генетических исследований в условиях работы СПЭБ применяли технологию микрокапиллярного электрофореза (станция Experion System, «Віо-Rad», США), позволяющую не использовать для ПЦР флуоресцентномеченые праймеры, в автоматическом режиме выполнять электрофоретическое разделение продуктов амплификации и обеспечить высокую точность при определении размера ампликонов, а так же фрагментарное секвенирование (анализатор ABI PRISM 3500, «Applied Biosystems», США). На случай обнаружения возбудителя ООИ бактериальной природы в ФКУЗ Ставропольский противочумный институт Роспотребнадзора была обеспечена готовность к проведению высокопроизводительного (полногеномного) секвенирования.

В результате разработан и применен на практике порядок формирования

диагностической базы СПЭБ Роспотребнадзора, основанный на структурированном алгоритме индикации, идентификации и выборе методов генетической характеристики ПБА.

4. Опыт практического использования алгоритма генетической характеристики ПБА в условиях работы СПЭБ Роспотребнадзора

При проведении эпидемиологических расследований ЧС инфекционного генеза важно определить источник инфекции, установить происхождение штамма патогена и его способность к эпидемическому распространению. Современные технологии молекулярно-генетического анализа позволяют решить эти задачи.

В результате анализа эпидемиологических рисков на подготовительном этапе был составлен перечень возбудителей актуальных инфекций, определены уровни исследований для каждого из них и выбраны методики генотипирования для ряда патогенов (таблица 1).

Таблица 1 - Использование молекулярно-генетических методов для характеристики патогенов, представляющих наибольшую эпидемиологическую опасность в период подготовки и проведения массовых международных мероприятий

I уровень	II уровень	IIIa уровень	IIIb уровень			
Возбудители острых кишечных инфекций						
Salmonella spp.	S. typhi MLVA		Пульс-гель электрофорез [*]			
E. coli	EHEC, ETEC, EPEC, EIEC, EAgEC	MLVA	Пульс-гель электрофорез*			
Shigella spp.	-	MLST	WGS			
Vibrio cholerae	Определение эпидемической значимости, серогруппы, биовара (гены ctxA, tcpA, wbeT, wbfR)	MLVA	Пульс-гель электрофорез [*]			
Adenovirus, Rotavirus, Norovirus, Astrovirus, Enterovirus	-	Фрагментное секвенирование	WGS			
	Возбудители респираторных заболеваний					
Вирус гриппа	Вирус гриппа А вирус гриппа В A/H1-swine A/H5N1 A/H5,H7,H9 A/H1N1 A/H3N2	Фрагментное секвенирование	WGS			
Coronaviridae	MERS-Cov SARS-Cov	Фрагментное секвенирование	WGS			
Legionella pneumophila	-	MLST	WGS			

I уровень	II уровень	IIIa уровень	IIIb уровень	
Возбудители ПОИ и ООИ (потенциальные агенты биологического терроризма)				
Yersinia pestis	Определение вирулентности, принадлежности к подвидам и биоварам (гены <i>pla</i> , <i>caf</i> 1, <i>lcr</i> V, <i>hms</i> H, <i>irp</i> 2 и др.)	MLVA-12	MLVA-25, DFR, WGS	
Brucella spp.	Определение вида, биовара	MLVA-16	SNP-анализ, WGS	
Francisella tularensis	Определение подвида	MLVA-5	MLVA-25, SNP- анализ, WGS	
Bacillus anthracis	Определение вирулентности (гены плазмид рХО1, рХО2)	canSNP-анализ, MLVA	SNP-анализ, WGS, SNR-анализ,	
Вирус лихорадки Западного Нила	-	Фрагментное секвенирование	WGS	
Вирус Крым-Конго геморрагической лихорадки	-	Фрагментное секвенирование	WGS	
Хантавирусы	-	Фрагментное секвенирование	WGS	

^{*}при наличии оборудования

При выборе методик генетического типирования учитывали доступность и дифференцирующую способность метода, наличие доступных баз данных, содержащих информацию о генотипах патогена, скорость выполнения анализа. В итоге для характеристики штаммов возбудителей бактериальных ООИ в качестве основного выбран метод MLVA, для *L. pneumofilla* и *Shigella* spp. – MLST, для возбудителей вирусных инфекций – секвенирование фрагментов генома по Сэнгеру. Также были определены алгоритмы филогенетического анализа результатов генотипирования. Исследование возбудителей ОКИ бактериальной этиологии планировалось осуществлять с применением идентификационного ПЦР – анализа для определения наличия специфических участков генома. В случае обнаружения возбудителя ООИ бактериальной природы выделенные культуры и образцы ДНК должны были передаваться в ФКУЗ Ставропольский противочумный институт Роспотребнадзора для проведения полногеномного секвенирования (дополнительный метод генотипирования).

Всего за период работы СПЭБ во время Олимпиады – 2014 методом ПЦР (I уровень генетического анализа) исследовано 1716 проб (11747 анализов), проведено генетическое типирование с применением идентификационной ПЦР, основного и дополнительного методов (в соответствии со II и III уровнями генетического анализа) 28 изолятов нуклеиновых кислот возбудителей инфекционных болезней, из них 9 штаммов *L. pneumophila* (семь штаммов серогруппы 1 и два – серогрупп 2-14), 7 – *Staphylococcus aureus* (6 штаммов выделены от людей, 1 из продуктов питания), 4 – *Escherichia coli* (все из продуктов питания), 1 участок генома вируса гриппа A субтипа H1-swine и 7 - *Y. enterocolitica*.

В результате выполненных исследований с помощью метода MLST и филогенетического анализа показано генетическое разнообразие штаммов

легионелл, циркулирующих в г. Сочи, что позволило повысить готовность к эпидемиологическому расследованию возможных случаев заболевания легионеллёзом во время массовых мероприятий и других событий.

Методом идентификационной ПЦР определена эпидемиологическая значимость изолятов стафилококка, кишечной палочки и проб, содержащих ДНК *Y. enterocolitica* переданных из бактериологической лаборатории СПЭБ.

Проведено секвенирование (по Сэнгеру) и филогенетический анализ фрагментов генома вируса гриппа А субтипа Н1-swine, выявленного в материале от больного, прибывшего из страны Африканского континента. Была определена нуклеотидная последовательность фрагмента гена NA (нейраминидазы) размером 393 п.н., тогда как ген НА (гемаглютинина) секвенировать не удалось. Полученные результаты проанализировали с использованием алгоритма nBLAST (NCBI). Для кластерного анализа использовали программу MEGA 5.0. Сравнение проводили с, представленными в GeneBank, последовательностями гена NA 99 штаммов гриппа А H1N1 swine 2009, циркулировавших в 2011-2013 гг. в США (63 штамма), России (12), Японии (10), Европе (8) и Китае (6).

На основании проведенного филогенетического анализа установлено, что исследуемый образец входил в одну группу со штаммами A/Indiana/167/2012(H1N1) (наиболее близкий штамм), A/Delaware/05/2010 (H1N1), A/NorthDakota/05/2011, выявленными в США в 2010-2012 гг. и генетически не однороден с российскими штаммами, что позволило судить о вероятном заносе возбудителя с другой территории.

За время работы специалистов СПЭБ в период Кубка конфедераций FIFA — 2017 методом ПЦР исследовано 148 проб (1024 анализа): из них декретированный контингент — 136 проб (952 исследования), лица с клиническими проявлениями ОКИ — 8 проб (56 исследований); клещи, снятые с людей - 4 пробы (16 исследований). В результате в 2 пробах клинического материала обнаружена ДНК Shigella spp., в 4 — РНК ротовируса группы А, в 14 — РНК норовируса 2 генотипа. Из 4 проб клещей в одной пробе обнаружена РНК Borrelia burgdorferi sensu lato и ДНК Anaplasma phagocytophilum, в одной — РНК B. burgdorferi s.1.

В период подготовки и проведения XIX Всемирного фестиваля молодежи и студентов — 2017, на основании эпидемических показаний по I уровню генетического анализа поступило 74 пробы клинического материала от 26 человек (282 исследования), из них на наличие нуклеиновых кислот рота-, норо-, астро-, аденовирусов, *Shigella* spp., EIEC, *Salmonella* spp., *Campylobacter* spp., энтеровирусов — 11, ООИ (чума - 11, сибирская язва - 1, туляремия - 1) — 13, гриппа А/гриппа В — 15, вирусных лихорадок (Зика, денге, Чикунгунья, Эбола, ЛЗН, КГЛ) — 25 и короновирусов SARS-Cov и MERS-Cov — 10. В результате в 1 пробе крови обнаружена РНК вируса денге и в 1 пробе фекалий — РНК энтеровируса.

Проба клинического материала, в которой выявлена РНК вируса денге, исследовалась в соответствии со II и III уровнями генетического анализа. Проведена идентификация фрагментов генома методом ПЦР - выявлены маркеры вируса денге 1 типа. Дальнейшее генетическое типирование (III уровень генетического проводили нуклеотидной анализа) на основе анализа последовательности участка гена СргМ размером 435 п.н. В результате установлена принадлежность исследуемого изолята к генотипу V в пределах серотипа 1. Генотип V имеет широкое распространение в мире, но преобладает в Индии. Сравнение секвенированной нуклеотидной последовательности

последовательностями из базы данных (ViPR) показало, что исследуемый изолят наиболее близок к изоляту Dengue virus 1 isolate D1/IND/PUNE/IRSHA-06, выделенному в Индии в 2016 г.

В период работы на чемпионате мира по футболу FIFA — 2018 в г. Сочи методом ПЦР (I уровень генетического анализа) исследовано 363 пробы (3823 исследования) клинического материала, из них на наличие нуклеиновых кислот рота-, норо-, астро-, аденовирусов, *Shigella* spp., энтероинвазивных *E. coli* (EIEC), *Salmonella* spp., *Campylobacter* spp., энтеровирусов — 313, возбудителей особо опасных инфекций (бруцеллез — 1, холера — 1) — 2, гриппа А/гриппа В — 3, вирусных лихорадок (Зика, денге, желтая лихорадка ЛЗН, КГЛ) — 42, короновирусов SARS-Cov и MERS-Cov — 1, *L. pneumophila* — 2.

В результате в 1 пробе обнаружена ДНК Shigella spp., в 6 - Salmonella spp., в 7 - Campylobacter spp., в 3 - РНК Rotavirus A, в 4 - Norovirus 2 генотипа, в 3 - Astrovirus и в 1 Influenza virus A. При проведении эпидемиологического расследования выявлено, что один из больных, в клиническом материале от которого обнаружена РНК норовируса, прибыл из республики Панама.

Данная проба исследовалась в соответствии с IIIа уровнем генетического анализа. В результате расшифрована нуклеотидная последовательность фрагмента белка нуклеокапсида размером 227 п.н. Сравнение секвенированной последовательности с данными GeneBank и NoroNET позволило определить принадлежность выявленного РНК-изолята норовируса к генотипу GII.4_Sydney_2012.

Генотип GII.4 с 1990 г. является доминирующим в мире и обладает наибольшим эпидемическим потенциалом, на его долю приходится более 80 % всех вспышек норовирусной инфекции. Генетический вариант GII.4_Sydney_2012, выявленный в исследуемом образце, впервые был обнаружен в конце 2012 г. в Австралии, затем получил распространение во многих странах (Соединенное Королевство, Нидерланды, Япония, Австралия, Франция, Новая Зеландия и Соединенные Штаты Америки), где вызвал рост заболеваемости по сравнению с предыдущими сезонами.

Норовирусы GII.4 Sydney_2012 генотипа так же широко распространены в регионах Российской Федерации, в г. Сочи данный геновариант выявлен в 2016 г.

В период подготовки и проведения саммита Россия — Африка — 2019 г. методом ПЦР было исследовано 128 проб клинического материала (1270 исследований). При исследовании 99 проб материала от декретированного контингента в пробе от одного человека выявлена ДНК Salmonella spp. При исследовании 3 клинических образцов от больных, госпитализированных в инфекционные стационары, у одного пациента из Гвинейской Республики обнаружена РНК Enterovirus.

Таким образом, в результате проведенной работы получен положительный опыт применения технологий генотипирования в условиях СПЭБ, который должен учитываться в дальнейшем.

5. Определение структурных особенностей генома штамма S. sonnei, выделенного при вспышке ОКИ в г. Ткуарчал Республики Абхазия в ноябре 2013 года

В период подготовки и проведения Олимпиады-2014 особое внимание уделялось мониторингу санитарно-эпидемиологической обстановки на

сопредельных территориях, в частности, в Республике Абхазия. В конце ноября 2013 г. в г. Ткуарчал произошло резкое осложнение ситуации по ОКИ. Эпидемиологическая обстановка, сложившаяся к 29.11.2013, характеризовалась следующими особенностями: в короткий период времени (с 22.11. по 28.11.2013) за медицинской помощью с симптомами острого гастроэнтероколита (диарея (3-5 раз) с примесью слизи, реже крови, боли в животе, тенезмы, рвота, у детей – температура до 38 °С и симптомы умеренной общей интоксикации) обратились 522 человека, в т.ч. 213 (44,3 %) детей в возрасте до 14 лет. Среди заболевших детей в возрасте до 1 года не было. В эпидемиологическом анамнезе отмечено употребление некипяченой водопроводной воды большинством больных. В результате расследования случаев заболевания было установлено, что очаги ОКИ возникли одновременно в различных районах города.

В ходе проведения эпидемиологического расследования, с участием специалистов СПЭБ Роспотребнадзора, с применением лабораторных методов исследования был установлен этиологический агент вспышки — $S.\ sonne.$ Сопоставление динамики поступления больных в инфекционный стационар с динамикой определения нестандартных проб питьевой воды позволило предположить возможность реализации водного пути передачи возбудителя, который, как правило, не является основным для $S.\ sonnei.$

Методом MLST (основной метод) определены аллельные типы исследуемых генов: adk-11, fumC-63, gyrB-7, icd-1, mdh-14, purA-7, recA-7, нуклеотидные замены в изученных локусах не выявлены. В результате был установлен сиквенс-тип штамма (наименование – S. sonnei-2013) – ST-152, являющийся одним из распространенных генотипов. Штаммы с ST-152 ранее выделялись в Германии в 2009 г. и в Китае в 2009-2010 гг., тогда как на территории РФ, согласно имеющейся в базе данных информации, ранее отсутствовали (рисунок 2).

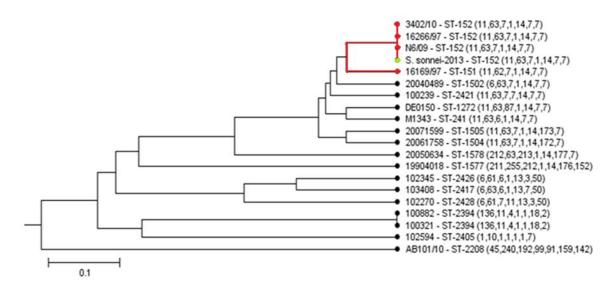


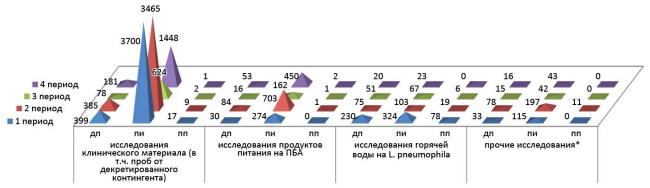
Рисунок 2 – Дендрограмма филогенетического родства штамма *S. sonnei*-2013

Для более углубленного изучения штамма *S. sonnei*-2013, определения важных отличительных особенностей было проведено полногеномное секвенирование (дополнительный метод). Его геном представлен 410 контигами общим размером 4471773 пар нуклеотидов (п.н.). Анализ показал высокую степень их сходства с последовательностью хромосомы и плазмид A, B, C и E штаммов *S. sonnei* 53G и

S. sonnei Ss046. Однако также были выявлены контиги, обладающие высокой степенью сходства с плазмидами штаммов других видов микроорганизмов. Контиг 000006 (длина 5114 п.н.) представлял собой полноразмерную последовательность плазмиды pBS 512 штамма S. boydii. Кроме того, выявлено 9 контигов с высоким процентом сходства с последовательностью плазмиды pO26-Vir штамма E. coli (H30). В геноме S. sonnei отсутствуют гены, входящие в вирулентный регион плазмиды pO26-Vir, но имеются гены, регулирующие биосинтез пилей адгезии IV типа (pilL-pilV), которые являются одним из факторов патогенности, обеспечивая адгезию микроба к клеткам кишечного эпителия.

Таким образом, анализ результатов MLST-типирования штамма *S. sonnei*, выделенного во время вспышки ОКИ, показал значительную степень сходства нуклеотидной последовательности хромосомной ДНК с последовательностями ранее секвенированных штаммов, опубликованных в базе данных GeneBank. Однако результаты полногеномного секвенирования выявили уникальные отличия — наличие фрагментов плазмид вирулентности pBS 512 *S. boydii* и pO26-Vir *E. coli* H30 [Fratamico at al., 2011], обусловивших отличительные особенности штамма.

6. Анализ структуры генетических лабораторных исследований, выполненных в условиях работы СПЭБ Роспотребнадзора в период проведения Олимпиады — 2014


Как правило, деятельность лабораторных и противоэпидемических служб, в том числе СПЭБ, во время массового мероприятия можно условно разделить на 2 периода, отличающиеся по выполняемым задачам, – работа в период подготовки и работа в период проведения мероприятия. Во время Олимпиады – 2014 СПЭБ функционировала в течение 61 сут. С целью определения нагрузки и структуры лабораторных исследований, выполненных методом ПЦР, в различные этапы мероприятия выделены 4 периода, обосновано отличающихся по спектру решаемых задач:

- предолимпийский с 19.01. по 04.02.2014 (17 сут);
- 2) олимпийский с 05.02 по 25.02.2014 (21 сут);
- 3) предпаралимпийский (межсоревновательный) с 26.02. по 04.03.2014 (7 сут);
- 4) паралимпийский с 05.03. по 20.03.2014 (16 cyr).

Все лабораторные исследования, выполненные в СПЭБ методом ПЦР, были разделены на следующие группы:

- исследования клинического материала (в т.ч. проб от декретированного контингента);
 - исследования продуктов питания на ПБА;
 - исследования горячей воды на *L. pneumophila*;
 - прочие исследования.

На рисунке 3 показана качественная (по группам) и количественная структура лабораторных анализов, проведенных в СПЭБ в различные периоды Олимпиады-2014.

ДП - кол-во доставленных проб; ПИ - кол-во проведенных исследований; ПП - кол-во положительных проб

* Клинический материал и объекты окружающей среды по эпидемическим показаниям, вода морская, открытых водоемов на группу кишечных вирусов, вода морская на вибриофлору, генотипирование и секвенирование штаммов, переданные культуры для идентификации возбудителей

Рисунок 3 — Структура лабораторных исследований СПЭБ в различные периоды массового международного мероприятия на примере Олимпиады — 2014

Графическое изображение медианного значения количества проведенных лабораторных исследований по группам в различные периоды Олимпиады — 2014 представлено на рисунке 4.

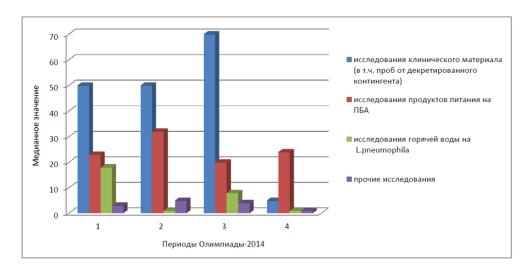


Рисунок 4 — Медианное значение количества проведенных лабораторных исследований в различные периоды массового международного мероприятия на примере Олимпиады — 2014

Общий количественный итог работы СПЭБ по генетическому лабораторному исследованию клинического материала и проб из объектов окружающей среды в различные периоды Олимпиады – 2014 подведен в таблице 2.

Таблица 2 – Структурная характеристика лабораторных исследований, выполненных в СПЭБ в различные периоды крупного массового международного мероприятия (на примере Олимпиады – 2014)

Период	Количество	Количество	Количество	Процент
	исследованных	проведенных	положительных	положительных
	проб (в среднем в	исследований (в	проб	проб от общего
	течение 1 сут)	среднем в течение		количества проб
		1 сут)		
1	692 (40,7)	4413 (259,6)	95	13,7
2	622 (29,6)	4475 (213,1)	40	6,4
3	160 (22,9)	895 (127,9)	9	5,6
4	270 (16,9)	1964 (122,8)	3	1,1

Как видно из таблицы, среднесуточные показатели поступивших проб и выполненных генетических анализов, а также процент положительных результатов уменьшались последовательно от первого периода Олимпиады — 2014 к четвертому. Очевидно, это является характерной особенностью работы СПЭБ в период крупных массовых мероприятий, в первую очередь длительных — 2 недели и более, и связано с постепенно изменяющейся структурой лабораторных исследований, организацией профилактических и противоэпидемических мероприятий. Данное обстоятельство должно учитываться при планировании деятельности бригады, в частности проведения лабораторных микробиологических исследований.

Таким образом, с помощью полученных результатов статистического анализа были обозначены общие тенденции. В дальнейшем эти данные могут составить основу при прогнозировании качественной и количественной структуры генетических лабораторных исследований, их изменения во времени при аналогичном алгоритме участия СПЭБ в санитарно-противоэпидемическом обеспечении, в первую очередь длительных, крупных массовых международных мероприятий.

ВЫВОДЫ

- 1. Впервые на основании результатов генетической идентификации изолятов нуклеиновых кислот возбудителей острых кишечных (рота-, норо-, астро-и энтеровирусы, *Salmonella* spp.) и природно-очаговых инфекций (хантавирусы, риккетсии группы КПЛ, боррелии) в период подготовки к чемпионату мира по футболу FIFA 2018 проведено комплексное профилирование генотипов ПБА отдельной территории Российской Федерации (г. Сочи)
- 2. Предложен и реализован на практике алгоритм генетической характеристики ПБА, основанный на последовательном применении методик анализа генома в соответствии с решаемой задачей: идентификационной ПЦР (внутривидовая характеристика ПБА, определение его эпидемиологической значимости); основного метода генотипирования выявление особенностей структуры участков генома, филогенетический анализ (MLVA, MLST, SNP, фрагментарного секвенирования по Сэнгеру и др.); дополнительного метода генотипирования уточняющие методы для более глубокого изучения генома (MLVA, MLST, SNP, фрагментарное секвенирование по Сэнгеру или полногеномное секвенирование).
- 3. В результате практического применения структурированного алгоритма генетической характеристики ПБА в период Олимпиады 2014 и других массовых мероприятий, проведенных в г. Сочи в 2015-2019 гг., систематизирована организация лабораторных исследований при осуществлении планового мониторинга и осложнениях эпидемиологической обстановки. Разработан порядок укомплектования СПЭБ Роспотребнадзора генодиагностическими препаратами,

основанный на учете структурных особенностей геномов актуальных возбудителей инфекций и оптимальных алгоритмов анализа: I — детекция (индикация) ПБА методом ПЦР; II — идентификация фрагментов генома методом ПЦР; IIIа и IIIb — последовательное генотипирование ПБА.

- 4. В результате применения последовательного генетического анализа определены структурные и филогенетические особенности генома штамма *S. sonnei*, ставшего этиологическим агентом вспышки ОКИ в г. Ткуарчал Республики Абхазия в ноябре 2013 г.: с использованием MLST (основной метод) установлен его сиквенс-тип ST-152; с помощью полногеномного секвенирования (дополнительный метод) выявлено наличие фрагментов плазмид вирулентности pBS 512 *S. boydii* и pO26-Vir *E. coli* H30, содержащих гены, детерминирующие синтез пилей адгезии IV типа (*pil*L-*pil*V), определивших эпидемиологическую значимость штамма.
- 5. На примере зимней Олимпиады 2014 определены количественные показатели генетических лабораторных исследований, выполненных СПЭБ Роспотребнадзора при проведении эпидемиологического надзора и социальногигиенического мониторинга, в период подготовки и проведения крупного массового международного мероприятия: удельный вес молекулярно-генетических исследований составил 92 % от общего числа анализов, среднее количество исследований в периоды подготовки в 1,5 раза превышало среднесуточную нагрузку в соревновательные периоды. В структуре генетических лабораторных исследований преобладали анализы материала от людей с максимумом в предолимпийский период (217,6 в сут.) и воды из систем водоснабжения в этот же период (19,1 в сут.).

Практические рекомендации

Предложенные алгоритмы лабораторного анализа и принципы формирования диагностической базы СПЭБ Роспотребнадзора могут быть использованы в дальнейшем при участии СПЭБ Роспотребнадзора в обеспечении санитарно-эпидемиологического благополучия населения в периоды подготовки и проведения массовых мероприятий.

СПИСОК ОСНОВНЫХ РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

1. XXII Олимпийские зимние игры и XI Паралимпийские зимние игры 2014 Сочи. Обеспечение санитарно-эпидемиологического благополучия: [коллективная монография] / Г.Г. Онищенко, А.Ю. Попова, Б.П. Кузькин, И.В. Брагина, Е.Б. Ежлова, Ю.В. Демина, А.А. Горский, А.С. Гуськов, О.И. Аксенова, А.А. Мельникова, Н.Д. Пакскина, Г.Е. Иванов, Л.В. Чикина, Е.С. Почтарева, В.С. Степанов, О.В. Прусаков, Н.В. Андрияшина, О.Н. Скударева, Н.В. Фролова, В.Ю. Смоленский, З.М. Омариев, А.Н. Куличенко, О.В. Малецкая, Д.В. Ефременко, Т.В. Таран, Е.А. Манин, А.Г. Рязанова, Н.Ф. Василенко, Д.Г. Пономаренко, В.М. Дубянский, В.Н. Савельев, И.В. Кузнецова, Е.С. Котенёв, Г.М. Грижебовский, В.П. Клиндухов, П.Н. Николаевич, Т.В. Гречаная, М.И. Балаева, В.А. Бирюков, И.И. Божко, Ю.Г. Дараган, О.Ю. Карпунин, М.А. Потёмкина, Л.С. Вечерняя, В.А. Егоров, Е.А. Вечерняя, С.Ч. Тешева, В.В. Пархоменко, О.А. Куличенко, Г.К. Рафеенко, Л.И. Щербина, Т.А. Землякова, Е.О. Кузнецов, В.Г. Оробей, С.Б. Вараксин, Л.И. Мишина, В.Н. Ефимчук, Р.Р. Аминев, О.А. Погудина, Т.Г. Чаплыгина, Н.С. Комарова, Е.А. Беланова, Е.П. Шевченко, В.Е. Елдинова, О.М. Пиликова, Е.А. Бойко, С.К. Дерлятко, В.И. Малай,

- Ю.В. Юничева, Л.Е. Василенко, И.К. Романович, А.Н. Барковский, А.В. Громов, Е.С. Казакова, Т.Ю. Красовская, С.А. Портенко, В.Е. Куклев, В.В. Кутырев, И.А. Дятлов, Н.Н. Карцев, Е.В. Мицевич, А.В. Ковальчук, А.Ю. Кармишин, А.А. Петров, Е.В. Рождественский, С.В. Борисевич, О.В. Тушина, Н.В. Зайцева, И.В. Май, С.В. Клейн, С.А. Вековшинина, Е.Ф. Филиппов, А.В. Бурлуцкая, В.Н. Городин / Под редакцией академика РАН Г.Г. Онищенко, профессора А.Н. Куличенко. Тверь: ООО «Издательство «Триада», 2015. 576 с.
- 2. Чемпионат мира по футболу 2018 года в России: обеспечение санитарноэпидемиологического благополучия: [коллективная монография] / Чемпионат мира по футболу 2018 года в России: обеспечение санитарно-эпидемиологического благополучия / А.Ю. Попова, В.Ю. Смоленский, И.В. Брагина, Б.П. Кузькин, Е.Б. Ежлова, Ю.В. Демина, Н.Д. Пакскина, И.Г. Шевкун, А.С. Гуськов, В.С. Степанов, В.Ю. Ананьев, М.В. Зароченцев, В.В. Мордвинова, А.А. Гарбузова, В.В. Кутырев, С.А. Щербакова, Е.С. Казакова, И.Г. Карнаухов, О.В. Кедрова, В.П. Топорков, С.К. Удовиченко, А.Е. Шиянова, Л.Н. Дмитриева, Е.А. Чумачкова, А.В. Иванова, С.А. Портенко, И.Н. Шарова, Е.В. Найденова, И.А. Касьян, Ж.А. Касьян, В.Е Куклев, Т.Ю. Красовская, А.С. Абдрашитова, А.М. Сеничкина, А.В. Казанцев, М.В. Проскурякова, Е.А. Билько, А.А. Лопатин, С.М. Иванова, В.В. Горшенко, А.В. Топорков, Д.В. Викторов, В.П. Смелянский, Е.В. Путинцева, К.В. Жуков, Л.О. Шахов, С.Н. Чеснокова, А.Н. Куличенко, Е.А. Манин, А.С. Волынкина, И.В. Кузнецова, А.А. Хачатурова, Д.В. Ефременко, И.К. Романович, А.Н. Барковский, К.А. Сапрыкин, Е.Е. Андреева, Е.Н. Игнатова, Ю.Н. Момот, Н.Н. Фомкина, Т.В. Федунова, Е.В. Назаренко, И.И. Пискарева, А.И. Худобородов, П.А. Истратов, Т.П. Рябенко, В.В. Кравченко, Ю.В. Кобзева, А.В. Иваненко, Н.А. Волкова, Н.В. Трусова, И.А. Левкин, И.В. Новик, О.М. Микаилова, М.А. Костина, О.В. Богатикова, Ф.В. Тарасов, К.Р. Гвазава, Н.С. Башкетова, Е.И. Смирнова, И.А. Заботина, Г.А. Горский, И.Г. Чхинджерия, О.Н. Смелова, И.А. Соколовская, А.Ф. Куприянов, В.Л. Романцова, Р.К. Фридман, И.В. Драй, Т.А. Гречанинова, С.М. Сибиряков, О.Ю. Олейник, Н.Е. Репникова, Т.Б. Кутасова, А.О. Шапарь, А.В. Еремин, А.Ю. Клименко, О.А. Историк, М.А. Черный, И.О. Мясников, А.Г. Мадоян, И.А. Чмырь, П.М. Суханов, И.В. Горбунова, И.И. Яровая, Н.М. Титова, М.А. Патяшина, М.В. Трофимова, Л.Г. Авдонина, Л.А. Балабанова, Л.Р. Юзлибаева, Л.О. Борисова, Л.Т. Гараева, М.А. Замалиева, Е.П. Сизова, Э.А. Сибгатуллина, А.М. Гиниятова, А.Р. Сабирзянов, Л.В. Ставропольская, И.С. Курбанов, Э.Д. Салахиева, В.В. Гасилин, Г.Д. Кравцова, Г.Г. Бадамшина, А.Л. Шарафутдинова, М.В. Хакимзянова, Л.Г. Иванова, В.А. Миронова, А.З. Зарипова, М.А. Потемкина, Т.В. Гречаная, М.И. Балаева, С.Ч. Тешева, Д.С. Ваниева, О.А. Пчельник, С.И. Мирошниченко, Е.В. Колос, Е.А. Вечерняя, В.Г. Оробей, С.Б. Вараксин, С.И. Бахаровская, В.И. Ефимчук, В.В. Куканова, О.А. Погудина, Е.В. Сыромля, Л.И. Мишина, Н.С. Комарова, Е.С. Чехвалова, И.В. Мищенко, Л.Г. Кучук, О.Г. Швец, В.И. Малай, Ю.В. Юничева, Т.Е. Рябова, Г.П Шкури, И.М. Медяник, А.Д. Отставнова, А.Е. Классовская, С.В. Кузьмин, Д.Н. Козловских, И.А. Власов, А.И. Юровских, С.А. Перминова, С.В. Скрябина, Н.Г. Шелунцова, Е.В. Бобылева, Т.Ю. Шулешов, А.В. Власов, С.В. Романов, И.В. Чистякова, С.В. Колтунов, А.С. Килячина, Е.А. Зверева, Е.В. Ковалев, А.В. Конченко, Е.Г.Ерганова, С.А. Коржов, М.М. Родионова, М.В. Калинина, С.А. Ненадская, Н.В. Леоненко, Ю.В. Рыжков, Е.АПономарева, Г.В. Карпущенко, Е.В. Егорушкин, И.П. Кульвец, А.В. Ефимова, М.М. Швагер, А.В. Литовко, А.М. Рябова, А.Ю. Гончаров, Е.Г. Тарасян, Д.Г. Кочубей, В.В. Миренский, Е.А. Бабура, А.А. Васильев, Т.Ю. Григорян, С.В. Соловьева, С.В. Щептева, О.П. Михеенко, Т.Ф. Орденко, Л.А. Шателюк, Т.Н. Погребная, А.В. Стефановская, Е.А.

- Петренко, А.А. Калугин, А.В. Ершова, О.В. Зубарева, И.А. Климина, Е.В. Резников, Н.В. Аброськина, Ю.В. Кетов, Е.М. Краснова, И.Г. Краснов, Н.М. Мальков, С.В. Перехожев, Е.В. Серова, М.Н. Скаковский, В.В. Астапова, Е.И. Ромасова, Е.О. Осетрова, С.В. Архипова, Р.Р. Галимова, С.А. Шерстнева, В.В. Аржанова, И.В. Коротких, И.О. Митюнина, О.Ю. Рязанова, Л.В. Чупахина. В.Г. Зотов, В.Г. Щелокова, Н.С. Кучеренко, О.Е. Степанова, Н.А. Садыкова, М.А. Шарабакина, М.М. Самодурова, О.Ю. Косарева, С.А. Бачаев, Д.А. Липшиц, Ю.А. Никитина, Н.К. Цветкова, Т.В. Осипова, Т.Ю. Феклина, Е.К. Лузина, И.В. Конева, Е.А. Солкина, Н.А. Калашникова, В.Ф. Сидорова, Г.А. Чехова, А.Ю. Балина, Т.П. Харитонова, Н.Ю. Фадеева, В.Б. Окунев, Ю.В. Матвеева, Л.В. Курганская, Г.П. Бардина, Е.Н. Кочетов, Е.И. Журавлева, А.И. Богачева, Н.М. Хвастунова, О.А. Лотванова, Е.П. Чумакова, Т.И. Бурлакова, М.Ф. Мартынова, Ю.Н. Каськов / Под ред. А.Ю. Поповой, В.В. Кутырева. Нижний Новгород: Исток, 2019. 448 с. ISBN 978-5-906546-14-2.
- 3. Онищенко, Г.Г. Обеспечение готовности и организация работы СПЭБ ФКУЗ «Ставропольский противочумный институт» Роспотребнадзора в период проведения XXII Олимпийских и XI Паралимпийских зимних игр в Сочи // Г.Г. Онищенко, Б.П. Кузькин, Ю.В. Демина, А.Н. Куличенко, О.В. Малецкая, Д.В. Ефременко, А.Г. Рязанова, **И.В. Кузнецова**, В.Н. Савельев, Г.М. Грижебовский, В.В. Кутырев, И.А. Дятлов, В.Е. Елдинова, Ю.В. Юничева, С.К. Дерлятко, В.Г. Оробей, В.П. Клиндухов, А.Д. Антоненко // Проблемы особо опасных инфекций. 2015. Вып. 1. С. 58-62. (Из Перечня ВАК).
- 4. Куличенко, А.Н. Обеспечение готовности специализированных противоэпидемических бригад к работе при проведении массовых мероприятий / А.Н. Куличенко, Д.В. Ефременко, **И.В. Кузнецова**, О.А. Зайцева // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. № 1. С. 76— 80. **(Из Перечня ВАК)**.
- 5. Онищенко, Г.Г. Особенности функционирования и взаимодействия диагностических лабораторий, задействованных в обеспечении защиты от инфекционных болезней, при проведении XXII Олимпийских зимних игр и XI Паралимпийских зимних игр в г. Сочи // Г.Г. Онищенко, А.Ю. Попова, И.В. Брагина, Б.П. Кузькин, Е.Б. Ежлова, Ю.В. Демина, А.С. Гуськов, Г.Е. Иванов, Л.В. Чикина, В.П. Клиндухов, Т.В. Гречаная, С.Ч. Тешева, А.Н. Куличенко, Д.В. Ефременко, Е.А. Манин, И.В. Кузнецова, В.В. Пархоменко, О.А. Куличенко, Г.К. Рафеенко, Л.И. Щербина, Д.Л. Завора, А.Ф. Брюханов, В.Е. Елдинова, Ю.В. Юничева, С.К. Дерлятко, Н.С. Комарова // Журнал микробиологии, эпидемиологии и иммунобиологии. 2015. № 1. С. 109–114. (Из Перечня ВАК).
- 6. Кузькин, Б.П. Применение современных методов генотипирования возбудителей инфекционных болезней в условиях оперативной работы специализированной противоэпидемической бригады в период проведения XXII Олимпийских зимних игр и XI Паралимпийских зимних игр / Б.П. Кузькин, А.Н. Куличенко, А.С. Волынкина, Д.В. Ефременко, **И.В. Кузнецова**, Е.С. Котенев, Г.И. Лямкин, Н.Н. Карцев, В.П. Клиндухов // Журнал микробиологии, эпидемиологии и иммунобиологии. − 2015. − № 2. − С. 119–122. **(Из Перечня ВАК)**.
- 7. Брагина, И.В. Организация работы и порядок лабораторной диагностики инфекционных болезней во время проведения XXII Олимпийских зимних игр и XI Паралимпийских зимних игр 2014 года / И.В. Брагина, Б.П. Кузькин, Е.Б. Ежлова, Ю.В. Демина, А.Н. Куличенко, Д.В. Ефременко, О.В. Малецкая, **И.В. Кузнецова**, Е.А. Манин, Г.И. Лямкин, В.В. Кутырев, С.А.Портенко, Т.Ю. Красовская, В.В.

- Пархоменко, Л.И. Щербина, В.П. Клиндухов, Т.В. Гречаная, С.Ч. Тешева, В.Г. Оробей, Д.Л. Завора, А.Ф. Брюханов, В.Е. Елдинова, Ю.В. Юничева, О.М. Пиликова, С.К. Дерлятко // Проблемы особо опасных инфекций. 2015. № 2. С. 13—16. (Из Перечня ВАК).
- 8. Кузькин, Б.П. Результаты работы СПЭБ ФКУЗ «Ставропольский противочумный институт» Роспотребнадзора в период проведения XXII Олимпийских и XI Паралимпийских зимних игр в Сочи / Б.П. Кузькин, А.Н. Куличенко, О.В. Малецкая, Д.В. Ефременко, Е.А. Манин, Е.С. Котенев, А.Г. Рязанова, И.В. Кузнецова, С.П. Дикова, Я.В. Лисицкая, А.С. Волынкина, Д.Г. Пономаренко, В.Е. Елдинова, Е.А. Бойко, В.П. Клиндухов, В.Г. Оробей, В.В. Кутырев, Е.С. Казакова, В.Е. Куклев, И.А. Дятлов, Н.Н. Карцев // Проблемы особо опасных инфекций. 2015. № 2. С. 17-21. (Из Перечня ВАК).
- 9. Онищенко, Г.Г. Эпидемическая вспышка шигеллёза Зонне в Республике Абхазия в 2013 году // Г.Г. Онищенко, Е.Б. Ежлова, Ю.В. Демина, А.Н. Куличенко, В.Н. Савельев, Д.С. Агапитов, А.С. Волынкина, **И.В. Кузнецова**, Т.В. Таран, Д.В. Ефременко, А.И. Беляева, З.Г. Маршан, Л.М. Полихова, В.В. Барциц, В.Г. Оробей // Журнал Эпидемиология и вакцинопрофилактика. 2015. № 2. С. 26—30. **(Из Перечня ВАК)**.
- 10. Васильева, О.В. Молекулярно-генетическая характеристика штамма *Shigella sonnei*-2013, выделенного при вспышке дизентерии в Республике Абхазия в 2013 году / О.В. Васильева, А.С. Волынкина, **И.В. Кузнецова**, С.В. Писаренко, А.Н. Куличенко // Журнал микробиологии, эпидемиологии и иммунобиологии. 2018. № 1. С. 72—76. **(Из Перечня ВАК)**.
- 11. **Кузнецова, И.В.** Применение принципов многофакторного генетического анализа возбудителей инфекционных болезней в работе СПЭБ Роспотребнадзора в период массовых мероприятий / И.В. Кузнецова, Д.В. Ефременко, А.Н. Куличенко // Проблемы особо опасных инфекций. − 2018. − № 2. − С. 68–72. **(Из Перечня ВАК)**.
- 12. Попова, А.Ю. Применение молекулярно-генетического анализа и геномного профилирования возбудителей инфекционных болезней региона Сочи в период подготовки и проведения чемпионата мира по футболу FIFA-2018 / А.Ю. Попова, А.Н. Куличенко, А.С. Волынкина, **И.В. Кузнецова,** А.Т. Подколзин, Е.В. Чехвалова, В.Г. Оробей // Журнал микробиологии, эпидемиологии и иммунобиологии. − 2019. − № 3. − С. 54–59. **(Из Перечня ВАК)**.
- 13. Куличенко. А.Н. Генетическое профилирование актуальных для региона г.к. Сочи возбудителей природно-очаговых и кишечных инфекций / А.Н. Куличенко, А.С. Волынкина, Я.В. Лисицкая, Е.С. Котенев, **И.В. Кузнецова,** А.Т. Подколзин, Е.В. Зайцева, Н.В. Паркина, В.Г. Оробей // Бактериология. – 2016. – Т. 1, № 1. – С. 16-21.
- 14. Ефременко, Д.В. О подготовке к обеспечению защиты от биологических угроз в период Олимпиады 2014 года в Сочи, участие СПЭБ ФКУЗ Ставропольский противочумный институт Роспотребнадзора / Д.В. Ефременко, **И.В. Кузнецова**, О.А. Зайцева, А.Н. Куличенко // Актуальные вопросы обеспечения санитарно-эпидемиологического благополучия в Причерноморском регионе: матер. региональной науч.-практ. конф. с международным участием, 24-25 сентября 2013 г., г. Ставрополь: электрон. изд. Ставрополь, 2013. С. 73-76.
- 15. **Кузнецова, И.В.** Методы генотипирования микроорганизмов в системе эпиднадзора при массовых мероприятиях / И.В. Кузнецова, А.С. Волынкина, Д.В. Ефременко, Д.А. Ковалев, А.Н. Куличенко // Социально-значимые и особо

- опасные инфекционные заболевания: матер. II Всеросс. науч.-практ. конф. с международ. участием, г. Сочи, 2–5 ноября 2015 г. Сочи, 2015. С. 86.
- 16. **Кузнецова, И.В.** Структурированный подход использования методов генетического анализа для решения эпидемиологических задач при работе СПЭБ Роспотребнадзора в период массовых мероприятий / И.В. Кузнецова, Д.В. Ефременко, А.Н. Куличенко // Актуальные проблемы болезней, общих для человека и животных: материалы II Всеросс. научно-практ. конф. с международным участием, Ставрополь, 5-6 апреля 2017 г. Режим доступа: http://snipchi.ru. С. 159–160.
- 17. **Кузнецова, И.В.** Применение принципов многофакторного генетического анализа возбудителей инфекционных болезней в работе СПЭБ Роспотребнадзора в период XIX Всемирного фестиваля молодёжи и студентов в г. Сочи в 2017 году / **И.В. Кузнецова,** А.С. Волынкина, Т.И. Чишенюк, Д.В. Ефременко, Д.А. Ковалев, А.Н. Куличенко // Молекулярная диагностика 2018: сб. тр. международной науч.-практ. конф. (Минск, 27–28 сентября 2018 г.) / под ред. В.И. Покровского. Минск: СтройМедиаПроект, 2018. С. 466.
- 18. **Кузнецова, И.В.** Применение алгоритма молекулярно-генетической характеристики возбудителей инфекционных болезней при работе СПЭБ Роспотребнадзора в период чемпионата мира по футболу FIFA-2018 в г. Сочи / И.В. Кузнецова, А.С. Волынкина, Т.И. Чишенюк, Д.В. Ефременко, Д.А. Ковалев, А.Н. Куличенко // Современные проблемы эпидемиологии, микробиологии и гигиены: матер. Х Всероссийской науч.-практ. конф. молодых ученых и специалистов Роспотребнадзора (Москва, 24–26 октября 2018 г.). М.: Русский Печатный Двор, 2018. С. 211–212.
- E.A. 19. Манин, Участие специалистов ФКУ3 «Ставропольский противочумный институт» Роспотребнадзора в обеспечении биологической безопасности населения в период подготовки и проведения чемпионата мира по футболу FIFA 2018 в г. Сочи / Е.А. Манин, Н.Ф. Василенко, А.С. Волынкина, И.В. Кузнецова, А.А. Хачатурова, И.В. Савельева, И.Н. Заикина, О.Н. Гаврилова, Т.И. Чишенюк, А.Н. Куличенко // Обеспечение санитарно-эпидемиологического благополучия в государствах-участниках СНГ: матер. XIV Межгосударственной науч.-практ. конф., посвящ. 100-летию ФКУЗ РосНИПЧИ «Микроб» (г. Саратов, 20-21 ноября 2018 г.). – Саратов: Амирит, 2018. – С. 242–244.