На правах рукописи

A. Rap.

Харченко Анастасия Вячеславовна

ФИЗИКО-ХИМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ В СИСТЕМАХ С УЧАСТИЕМ ГАЛОГЕНИДОВ, ХРОМАТОВ И ВОЛЬФРАМАТОВ НЕКОТОРЫХ ЩЕЛОЧНЫХ МЕТАЛЛОВ

1.4.4. – Физическая химия 1.4.1. – Неорганическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Самарский государственный технический университет» на кафедре общей и неорганической химии

Научные руководители:	доктор химических наук, профессор Гаркушин Иван Кириллович						
	кандидат химических наук, доцент Егорова Екатерина Михайловна						
Официальные оппоненты:	Трифонов Константин Иванович доктор химических наук, профессор, ФГБОУ ВО «Ковровская государственная технологическая академия имени В.А. Дегтярева»						
	Михайлов Олег Васильевич доктор химических наук, профессор, ФГБОУ ВО «Казанский национальный исследовательский техно- логический университет»						
Ведущая организация:	ФГБОУ ВО «Саратовский национальный исследова- тельский государственный университет имени Н.Г. Чернышевского»						

Защита состоится «21» декабря 2021 г. в 14 часов 00 мин. на заседании диссертационного совета 24.2.377.03 (Д 212.217.05) при ФГБОУ ВО «Самарский государственный технический университет» по адресу: 443100, г. Самара, ул. Молодогвардейская, 244, ауд. 200.

Отзывы по данной работе в двух экземплярах, заверенные гербовой печатью, просим направлять по адресу: Россия, 443100, г. Самара, ул. Молодогвардейская, 244, главный корпус, на имя ученого секретаря диссертационного совета 24.2.377.03 (Д 212.217.05); тел./факс: (846) 3322122; email: <u>orgchem@samgtu.ru</u>. В отзыве просим указывать почтовый адрес, номер телефона, электронную почту, наименование организации, должность, шифр и наименование научной специальности.

С диссертацией можно ознакомиться в библиотеке Самарского государственного технического университета (ул. Первомайская, 18) и на сайте диссертационного совета 24.2.377.03 (Д 212.217.05) <u>http://d21221705.samgtu.ru</u>.

Автореферат разослан « » 2021 г.

Ученый секретарь диссертационного совета 24.2.377.03 (Д 212.217.05) кандидат химических наук, доцент

Ивлева Е.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Прогрессирующая потребность в электроэнергии, в частности, спрос на недорогие и экологически чистые возобновляемые источники электрической энергии, приводит к поиску новых видов таких источников. Поэтому изыскание новых теплоаккумулирующих материалов (ТАМ) и химических источников тока (ХИТ) на основе многокомпонентных систем (МКС) неорганических солей s¹-элементов является актуальным. Помимо этого, применение функциональных материалов на основе солей щелочных металлов весьма широко: неорганические солевые смеси используются в промышленной металлургии; как перспективные флюсы для сварки и пайки металлов, в медицине, домашней технике, народном хозяйстве.

Многокомпонентные системы с участием солей кислородсодержащих кислот и галогенидов щелочных металлов малоизучены и, поэтому, являются перспективными для получения новых материалов на основе сплавов составов, отвечающих точкам нонвариантных равновесий. Также изучение таких систем представляет значимость для пополнения базы данных в качестве справочной информации. Фундаментальная направленность изучения систем солей кислородсодержащих кислот и галогенидов щелочных металлов – для выявления закономерностей в строении диаграмм состояния.

Работа выполнена в рамках проектной части государственного задания Минобрнауки РФ Самарского государственного технического университета № 0778-2020-0005.

Степень разработанности темы. Обзор научной и патентной литературы показал, что наряду с большим массивом исследованных солевых систем, осталось значительное число неизученных систем разной мерности из галогенидов, хроматов и вольфраматов s¹-металлов. В литературе имеются данные о результатах разбиения четырехкомпонентной взаимной системы $Na^+,Rb^+||F^-,I^-,CrO_4^{2^-}$, однако экспериментально не исследованы стабильные элементы данной системы: NaF-Rb₃CrO₄F-RbF-RbI, NaF-Rb₂CrO₄-RbI, Na₂CrO₄-RbI, NaF-Rb₂CrO₄-RbI, NaF-Na₂CrO₄-RbI, Na²-Pahee изучены не были.

Цель работы – установление ионообменных процессов и фазовых равновесий в системах с участием некоторых фторидов, бромидов, йодидов, хроматов и вольфраматов лития, натрия, калия и рубидия.

Основные задачи исследования:

– разбиение на симплексы четырехкомпонентных взаимных систем Na⁺,K⁺|| Γ ,CrO₄²⁻,WO₄²⁻, Na⁺,Rb⁺||F,I⁻,CrO₄²⁻, Li⁺,Rb⁺||F,Br⁻,CrO₄²⁻ и построение древ фаз;

– выявление химического взаимодействия в трех- и четырехкомпонентных взаимных системах $Li^+,Rb^+||Br^-,CrO_4^{2-}, Na^+,K^+||I^-,CrO_4^{2-},WO_4^{2-}, Na^+,Rb^+||F^-,I^-,CrO_4^{2-},Li^+,Rb^+||F^-,Br^-,CrO_4^{2-};$

– прогнозирование температур плавления и составов эвтектик стабильных треугольников четырехкомпонентных взаимных систем Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻, Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻ и трехкомпонентной системы RbF-RbBr-Rb₂CrO₄; – экспериментальное исследование неизученных ранее систем MeF-MeI-Me₂CrO₄-Me₂WO₄ (Me - Na, K), Na⁺,K⁺|| Γ ,CrO₄²⁻,WO₄²⁻, Na⁺,Rb⁺||F,I⁻,CrO₄²⁻, Li⁺,Rb⁺||F,Br⁻,CrO₄²⁻;

– анализ топологии ликвидусов и химического взаимодействия ряда систем $Li^+, Rb^+ ||Hal^-, CrO_4^{-2-}$ (Hal⁻ – F⁻, Br⁻, Cl⁻, I⁻).

Научная новизна. Впервые проведено разбиение на симплексы трех $Na^+, K^+ || I^-, CrO_4^{2-}, WO_4^{2-}, W$ четырехкомпонентных систем взаимных $Na^+,Rb^+||F,I,CrO_4^{2-}, Li^+,Rb^+||F,Br,CrO_4^{2-}, построены древа фаз, которые$ подтверждены экспериментальными методами ДТА и РФА. Описано химическое взаимодействие в трех- и четырехкомпонентных взаимных системах $Li^{+},Rb^{+}||Br^{-},CrO_{4}^{2^{-}}, Na^{+},K^{+}||I^{-},CrO_{4}^{2^{-}},WO_{4}^{2^{-}}, Na^{+},Rb^{+}||F^{-},I^{-},CrO_{4}^{2^{-}}, Li^{+},Rb^{+}||F^{-},Br^{-},Rb^{+}||F^{-},Rb^{+$ CrO_4^{2-} . Впервые экспериментально исследованы 5 трехкомпонентных систем (KI-K₂CrO₄-K₂WO₄, NaI-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄- Na_2WO_4 , RbF-RbBr-Rb₂CrO₄), одна трехкомпонентная взаимная система (Li,Rb||Br,CrO₄), две четырехкомпонентных системы (NaF-NaI-Na₂CrO₄-Na₂WO₄, KF-KI-K₂CrO₄-K₂WO₄), 3 стабильных тетраэдра и 2 секущих треугольника четырехкомпонентной взаимной системы Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻ и четырехкомпонентная взаимная система Na⁺,K⁺||Г,CrO₄²⁻,WO₄²⁻. Определены характеристики (состав и температура плавления) 15 точек нонвариантных равновесий в системах KI-K₂CrO₄-K₂WO₄, NaI-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-NaF-Na₂CrO₄-Na₂WO₄, RbF-RbBr-Rb₂CrO₄, Li^+ , Rb⁺||Br⁻, CrO₄²⁻, K_2WO_4 . MeF-MeI-Me₂CrO₄-Me₂WO₄ (Me – Na, K), Na⁺,K⁺ $||I^-,CrO_4^{-2-},WO_4^{-2-},Na^+,Rb^+||F^-,I^-||F^-,I$.CrO₄²⁻. Описаны фазовые равновесные состояния для всех элементов фазовых диаграмм. Проведен анализ топологии ликвидусов и химического взаимодействия систем Li^+ , Rb^+ ||Hal⁻, CrO_4^{2-} (Hal⁻ – F⁻, Br⁻, Cl⁻, I⁻).

Теоретическая и практическая значимость. Экспериментально получены характеристики (состав, температура плавления) смесей, отвечающих точкам нонвариантных равновесий в системах KI-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, RbF-RbBr-Rb₂CrO₄, Li⁺,Rb⁺||Br⁻,CrO₄⁻²⁻, MeF-MeI-Me₂CrO₄-Me₂WO₄ (Me – Na, K), Na⁺,K⁺||Г,CrO₄⁻²⁻, Na⁺,Rb⁺||F⁻,Г,CrO₄⁻²⁻, которые могут служить основой для разработки теплоаккумулирующих материалов и расплавляемых электролитов XИТ.

Данные по фазовым равновесиям в изученных системах представляют самостоятельный интерес как справочный материал.

Методология и методы исследования. Диссертационная работа основана на общепринятых способах изучения фазовых равновесий солевых систем. В качестве источников информации использованы периодические издания, научные публикации, патентная информация, справочники и монографии. Прогнозирование температур плавления в образцах проводили с помощью программного комплекса «АС Моделирование фазовых диаграмм». Разбиение исследуемых систем на отдельные симплексы осуществлено в соответствии с теорией графов. Изучение химического взаимодействия в сплавах проведено конверсионным методом и методом ионного баланса. Экспериментальные исследования выполнены на установке дифференциального термического анализа с верхним подводом платина–платинородиевых термопар. Цифровой сигнал обрабатывался на интерфейсе программы DSC Tool 2.0. Рентгенофазовый анализ проводился на дифрактометре ARLX'TRA. Дериватограммы сняты на дериватографе Q-1500D системы F. Paulik, J. Paulik, L. Erdey фирмы MOM (Венгрия).

На защиту выносятся следующие основные положения:

1. Результаты разбиения на симплексы трех четырехкомпонентных взаимных систем $Na^+, K^+ ||I^-, CrO_4^{2^-}, WO_4^{2^-}, Na^+, Rb^+ ||F^-, I^-, CrO_4^{2^-}, Li^+, Rb^+ ||F^-, Br^-, CrO_4^{2^-}$.

2. Результаты описания химического взаимодействия в системах $Li^+,Rb^+||Br^-,CrO_4^{2-}, Na^+,K^+||I^-,CrO_4^{2-},WO_4^{2-}, Na^+,Rb^+||F^-,I^-,CrO_4^{2-}, Li^+,Rb^+||F^-,Br^-,CrO_4^{2-}$ конверсионным методом и методом ионного баланса.

3. Результаты экспериментального исследования методами ДТА, РФА, ТГА пяти трехкомпонентных систем (KI-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, RbF-RbBr-Rb₂CrO₄), одной трехкомпонентная взаимная система (Li⁺,Rb⁺||Br⁻,CrO₄²⁻), двух четырехкомпонентных систем (NaF-NaI-Na₂CrO₄-Na₂WO₄, KF-KI-K₂CrO₄-K₂WO₄), трех стабильных тетраэдров и двух секущих треугольников четырехкомпонентной взаимной системы Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻ и одной четырехкомпонентной взаимной системы Na⁺,K⁺||I⁻,CrO₄²⁻,WO₄²⁻, представленной одним симплексом.

4. 10 составов эвтектических смесей, 3 состава перитектических смесей, 1 состав точки выклинивания и 1 состав минимума на кривой моновариантно-го равновесия.

Степень достоверности полученных данных. Результаты выполненных исследований были получены с использованием сертифицированного и поверенного оборудования для проведения экспериментальных работ с обеспечением воспроизводимости получаемых данных, в том числе при использовании оборудования центра коллективного пользования СамГТУ.

Личное участие автора в получении научных результатов. Автором лично сформированы тема, поставлены цели и задачи на основе анализа литературы, проведены планирование, организация и экспериментальные исследования на базе Самарского государственного технического университета. Обсуждение и подготовка к публикации полученных результатов проводилось с участием соавторов с определяющим вкладом диссертанта. Общая постановка цели и задач диссертационного исследования проведена совместно с научными руководителями. Харченко А.В. получены следующие наиболее существенные научные результаты:

- проведено разбиение на симплексы трех четырехкомпонентных взаимных систем Na⁺,K⁺||I⁻,CrO₄²⁻,WO₄²⁻, Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻, Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻, построены древа фаз, которые подтверждены экспериментальными методами ДТА и РФА;

- описано химическое взаимодействие в трех- и четырехкомпонентных взаимных системах $Li^+,Rb^+||Br^-,CrO_4^{2-}, Na^+,K^+||\Gamma,CrO_4^{2-},WO_4^{2-}, Na^+,Rb^+||F^-,\Gamma,CrO_4^{2-}, Li^+,Rb^+||F^-,Br^-,CrO_4^{2-}$ конверсионным методом и методом и онного баланса;

- экспериментально исследованы пять трехкомпонентных систем (KI-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, RbF-RbBr-Rb₂CrO₄), одна трехкомпонентная взаимная система (Li⁺,Rb⁺||Br⁻,CrO₄⁻²⁻), две четырехкомпонентные системы (NaF-NaI-Na₂CrO₄-Na₂WO₄, KF-KI-K₂CrO₄-K₂WO₄), 3 стабильных тетраэдра и 2 секущих треугольника четырехкомпонентной взаимной системы $Na^+, Rb^+ ||F^-, I^-, CrO_4^{-2-}$ и четырехкомпонентная взаимная система $Na^+, K^+ ||I^-, CrO_4^{-2-}, WO_4^{-2-};$

- определены характеристики (состав и температура плавления) для 10 составов эвтектических смесей, 3 составов перитектических смесей, 1 состава точки выклинивания и 1 состава минимума на кривой моновариантного равновесия.

Апробация работы. Результаты работы в форме докладов и сообщений обсуждались и докладывались на научных конференциях: Х Международное Курнаковское совещание по физико-химическому анализу (Самара, 2013), I Международная молодежная научная конференция, посвященная 65-летию основания Физико-технического института (Екатеринбург, 2014), 53-я международная. научная студенческая конференция МНСК-2015 (Новосибирск, 2015), III Международная молодежная научная конференция: Физика. Технологии. Инновации ФТИ-2016 (Екатеринбург: 2016), Фундаментальные проблемы и прикладные аспекты химической науки и образования (Махачкала 2016), Современные достижения химических наук: Всероссийская юбилейная конференция с международным участием, посвященная 100-летию Пермского университета (Пермь, 2016), XXII International Conference on Chemical Thermodynamics in Russia, RCCT-2019 (St.Petersburg, 2019), XVI International Conference on Thermal Analysis and Calorimetry in Russia, RTAC-2020 (Moscow, 2020).

Публикации. По содержанию исследования опубликовано 10 печатных работ, включая 2 статьи, опубликованные в рецензируемых научных журналах, и 8 работ в трудах научных конференций.

Объем и структура работы. Диссертационная работа включает введение, 4 главы– теоретическую часть, экспериментальную часть, обзор литературы, обсуждение результатов, заключение и список литературы из 147 наименований цитируемой литературы. Работа изложена на 142 страницах машинописного текста, включающих 18 таблиц, 100 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Bo обоснована выбранной введении актуальность темы, сформулированы диссертационной работы, приведены цели И задачи полученные новые научные результаты, описана практическая И теоретическая значимость работы, основные положения, выносимые на защиту, личный вклад автора, сведения по апробации, объему и структуре диссертации.

В первой главе приведён аналитический обзор литературы по применению фторидных, бромидных и йодидных солей, а также хроматов и вольфраматов некоторых щелочных и щелочноземельных металлов. Приведено описание теоретических и экспериментальных методов исследования многокомпонентных систем. Описаны исследованные двух -, трехкомпонентные и четырехкомпонентные невзаимные и взаимные системы, входящие в объект исследования. **Во второй главе** проведено геометрическое моделирование фазовых комплексов трехкомпонентных систем. В качестве примера на рис. 1 показаны варианты моделей ликвидусов неизученной системы RbF–RbBr–Rb2CrO₄.

Также рассмотрено разбиение и химическое взаимодействие во взаимных системах Li⁺,Rb⁺||Br⁻,CrO₄²⁻, Na⁺,K⁺||I⁻,CrO₄²⁻, WO₄²⁻, Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻, Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻. Все системы имеют линейные древа фаз, из которых система Li⁺,Rb⁺||Br⁻,CrO₄²⁻ представлена четырьмя фазовыми треугольниками, разделенными тремя стабильными секущими. В смеси, отвечающей точке конверсии К тройной взаимной системы Li⁺,Rb⁺||Br⁻,CrO₄²⁻ (рис. 2), протекает реакция обмена (1).

Rb₂CrO₄ + 2LiBr
$$\rightleftharpoons$$
 Li₂CrO₄ + 2RbBr
 $\Delta_{\rm r}$ H[°]₂₉₈ = -68.292 кДж, $\Delta_{\rm r}$ G[°]₂₉₈ = -57.961 кДж (1)

Рисунок 2 – Варианты пересечений стабильных и нестабильных секущих в системе Li⁺,Rb⁺||Br⁻,CrO₄²⁻

Для остальных пересечений стабильных и нестабильных секущих (точки К₁...К₆) реакции обмена приведены в виде уравнений (2-8).

 $\Delta_r H^{\circ}_{298}$, $\Delta_r G^{\circ}_{298}$,

		кДж	кДж	
Точка К:	$LiRbCrO_4 + LiRbBr_2 = Li_2CrO_4 + 2RbBr$	-34.146	-28.981	(2)
Точка К ₁ :	$4\text{LiBr} + \text{Rb}_2\text{CrO}_4 = \text{Li}_2\text{CrO}_4 + 2\text{LiRbBr}_2$	-68.292	-57.961	(3)
Точка К ₂ :	$LiBr + Rb_2CrO_4 = LiRbCrO_4 + RbBr$	-34.146	-28.980	(4)
Точка К3:	$2\text{LiBr} + \text{LiRbCrO}_4 = \text{Li}_2\text{CrO}_4 + \text{LiRbBr}_2$	-34.146	-28.981	(5)
Точка К ₄ :	$LiBr + LiRbCrO_4 = Li_2CrO_4 + RbBr$	-34.146	-28.981	(6)
Точка К5:	$Rb_2CrO_4 + 2LiRbBr_2 = Li_2CrO_4 + 4RbBr$	-68.292	-57.961	(7)
Точка К ₆ :	$Rb_2CrO_4 + LiRbBr_2 = LiRbCrO_4 + 2RbBr$	-34.146	-28.981	(8)

Древо фаз системы Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻ включает четыре стабильных тетраэдра, которые соединяются тремя секущими треугольниками. Система Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻ представлена семью стабильными тетраэдрами и шестью секущими треугольниками, а система Na⁺,K⁺||I⁻,CrO₄²⁻,WO₄²⁻ – одним симплексом. В качестве примера рассмотрим разбиение на симплексы с применением теории графов системы Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻ (рис. 3).

Рисунок 3 – Схема и развертка призмы составов системы $Li^+, Rb^+ ||F^-, Br^-, CrO_4^{2-}$

Стабильные секущие внутри трехкомпонентных взаимных систем проведены на основании данных литературы, а также термодинамических расчетов. Наличие в ограняющих трехкомпонентных взаимных системах двух конгруэнтно и двух инконгруэнтно плавящихся бинарных соединений значительно усложняют фазовый комплекс системы Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻. В табл. 1 приведена матрица смежности.

	Индексы	X1	X ₂	X ₃	X4	X5	X ₆	X ₁₄	X46	X ₃₆	X ₂₅
LiF	X1	1	1	1	0	1	1	1	1	1	1
LiBr	X ₂		1	1	0	0	0	0	0	0	1
Li ₂ CrO ₄	X ₃			1	0	1	0	0	0	1	1
RbF	X_4				1	1	0	1	1	0	0
RbBr	X_5					1	1	1	1	1	1
Rb ₂ CrO ₄	X_6						1	0	1	1	0
D _{и3}	X ₁₄							1	1	0	0
D _{K2}	X46								1	0	0
D _{K4}	X ₃₆									1	0
D _{и4}	X ₂₅										1

Таблица 1 -	 Матрица 	смежности	системы Li	+,Rb	⁺ F ⁻ ,Br ⁻ ,CrO ₄ ⁻
-------------	-----------------------------	-----------	------------	------	---

На основе данных матрицы смежности составлено логическое выражение, представляющее собой произведение сумм индексов несмежных вершин:

$$\begin{array}{c} (X_1+X_4)(X_2+X_4X_5X_6X_{14}X_{46}X_{36})(X_3+X_4X_6X_{14}X_{46})(X_4+X_6X_{36}X_{25})(X_6+X_{14}X_{25}) \\ (X_{14}+X_{36}X_{25})(X_{46}+X_{36}X_{25})(X_{36}+X_{25}). \end{array}$$

Путем выписывания недостающих вершин для несвязанных графов, получена совокупность симплексов (стабильных тетраэдров):

I) $X_4X_5X_{14}X_{46}$ RbF-RbBr-D_{μ 3}-D_{κ 2} II) $X_1X_5X_{14}X_{46}$ LiF-RbBr-D_{μ 3}-D_{κ 2}

III) $X_1 X_5 X_6 X_{46}$	LiF-RbBr-Rb ₂ CrO ₄ -D _{k2}
IV) $X_1X_5X_6X_{36}$	LiF-RbBr-Rb ₂ CrO ₄ -D _{K4}
V) $X_1 X_3 X_5 X_{36}$	LiF–Li ₂ CrO ₄ –RbBr–D _{к4}
VI) $X_1 X_3 X_5 X_{25}$	LiF-Li ₂ CrO ₄ -RbBr -D ₁₄
VII) $X_1 X_2 X_3 X_{25}$	LiF–LiBr–Li ₂ CrO ₄ –D _{и4}

Общие элементы каждой пары смежных симплексов образуют стабильные секущие элементы (стабильные треугольники):

I) $X_5 X_{14} X_{46}$	RbBr–D _{и3} –D _{к2}
II) $X_1 X_5 X_{46}$	LiF–RbBr–D _{k2}
III) $X_1X_5X_6$	LiF–RbBr–Rb ₂ CrO ₄
IV) $X_1 X_5 X_{36}$	LiF–RbBr–D _{к4}
V) $X_1X_3X_5$	LiF-Li2CrO4-RbBr
VI) $X_1 X_3 X_{25}$	LiF-Li ₂ CrO ₄ -D _{и4}
TT 1	

Древо фаз системы Li⁺,Rb⁺||F⁻,Br⁻,CrO₄²⁻ линейное, состоит из семи стабильных тетраэдров, связанных между собой шестью секущими треугольниками. Оно представлено на рис. 4.

Аналогичным образом проведено разбиение на симплексы четырехкомпонентных взаимных систем $Na^+, K^+ ||\Gamma, CrO_4^{2-}, WO_4^{2-}, Na^+, Rb^+||F^-, \Gamma, CrO_4^{2-}$.

В смесях, отвечающих точкам полной конверсии, протекают следующие реакции:

$$K_1: 2RbF + Li_2CrO_4 \approx 2LiF + Rb_2CrO_4$$
(9)

(11)

$$K_2: 2LiBr + Rb_2CrO_4 \neq 2RbBr + Li_2CrO_4$$
(10)

 K_3 : LiBr+RbF \Rightarrow LiF+RbBr

Суммируя реакции (10) и (11) для составов смесей точек полной конверсии K_2 и K_3 , получаем реакцию обмена, протекающую в смеси, отвечающей центральной точке линии конверсии K_2 - K_3 :

$$2\text{LiBr}+\text{Rb}_{2}\text{CrO}_{4} \rightleftharpoons 2\text{RbBr}+\text{Li}_{2}\text{CrO}_{4}$$
$$\underline{\text{LiBr}+\text{RbF}} \rightleftharpoons \text{LiF}+\text{RbBr}$$
$$\text{RbF}+\text{Rb}_{2}\text{CrO}_{4}+3\text{LiBr} \rightleftharpoons 3\text{RbBr}+\text{LiF}+\text{Li}_{2}\text{CrO}_{4}$$

Выражая содержание компонентов в точке K₂ через x, в точке K₃ через (1-х), получаем уравнение реакции обмена для любой смеси на линии конверсии K₂-K₃:

(1-x) $RbF + x Rb_2CrO_4 + LiBr \rightleftharpoons RbBr + (1-x) LiF + x Li_2CrO_4$

Кристаллизующиеся фазы для смесей линии конверсии K_2 - K_3 являются LiF, RbBr, Li₂CrO₄. Суммируя реакции (11) и (9) для составов смесей точек полной конверсии K_1 и K_3 , получаем реакцию обмена, протекающую в смеси, отвечающей центральной точке линии конверсии K_3 - K_1 :

$$LiBr+RbF \rightleftharpoons LiF+RbBr$$
$$2RbF+Li_2CrO_4 \rightleftharpoons 2LiF+Rb_2CrO_4$$

 $LiBr + Li_2CrO_4 + 3RbF \rightleftharpoons 3LiF + Rb_2CrO_4 + RbBr$

Выражая содержание компонентов в точке K₃ через у, в точке K₁ через (1-у), получаем уравнение реакции обмена для составов смесей любой точки линии конверсии K₃-K₁:

y LiBr + (1-y) Li₂CrO₄ + RbF \rightleftharpoons LiF + (1-y) Rb₂CrO₄ + y RbBr

Таким образом, стабильными продуктами реакции, приведенной выше, являются фазы LiF, RbBr, Rb₂CrO₄.

В третьей главе приводятся результаты экспериментального исследования фазовых равновесий в системах методами ДТА и РФА. Кривые нагревания и охлаждения составов снимали на установке ДТА в стандартном исполнении с верхним подводом термопар. Холодные спаи термостатировались при 0°С в сосуде Дьюара с тающим льдом. Индифферентным веществом служил свежепрокаленный оксид алюминия квалификации «чда». Цифровой сигнал обрабатывался на интерфейсе программы DSC Tool 2.0. Скорость нагрева (охлаждения) образцов составляла 5-15 град/мин. Точность измерения температур составляла ± 2.5 °C, при точности взвешивания составов 0,5% на электронных весах AdventurerOhausRV214.

Рентгенофазовый анализ проводился на дифрактометре ARLX'TRA в лаборатории рентгеновской дифрактометрии электронной и зондовой микроскопии СамГТУ. Дериватограммы сняты на дериватографе Q-1500D системы F. Paulik, J. Paulik, L. Erdey фирмы MOM (Венгрия).

Экспериментально изучены пять трехкомпонентных, одна трехкомпонентная взаимная, две четырехкомпонентных и одна четырехкомпонентная взаимная система, а также два секущих треугольника и три стабильных тетраэдра из фторидов, бромидов, йодидов, хроматов и вольфраматов лития, натрия, калия и рубидия.

Исследование *трехкомпонентных систем* приведено на примере системы RbF-RbBr-Rb₂CrO₄ (рис. 5). Элементами огранения тройной системы являются три двухкомпонентные системы, проведенный обзор литературы показал, что в системах RbF-RbBr и RbBr-Rb₂CrO₄ образуются эвтектики. В системе RbF-Rb₂CrO₄ присутствует двойное соединение RbF·Rb₂CrO₄ инконгруэнтного плавления. Для нахождения точек нонвариантных равновесий в трехкомпонентной системе RbF-RbBr-Rb₂CrO₄ в соответствии с правилами проекционно-термографического метода выбран политермический разрез A [60% RbBr + 40% RbF] - B [60% RbBr + 40% Rb₂CrO₄], проходящий через оба вторичных фазовых треугольника системы. Экспериментальное исследование разреза AB позволило определить направления на две трехкомпонентные нонвариантные точки точки \overline{P}_8 и \overline{E}_{24} и температуры плавления перитектики (554 °C) и эвтектики (522 °C).

Рисунок 5 – Трехкомпонентная система RbF-RbBr-RbBr-Rb2CrO₄ и *T-x* – диаграммы разрезов: AB, RbBr $\rightarrow \overline{E}_{24}$ 522 $\rightarrow E_{24}$ 522, RbBr $\rightarrow \overline{P}_8$ 554 $\rightarrow P_8$ 554

Изучением разрезов, выходящих из вершины RbBr и проходящих через точки пересечения ветвей вторичной кристаллизации \overline{P}_8 и \overline{E}_{24} на разрезе AB, определены составы смесей, отвечающих нонвариантным точкам: E_{24} 522 при содержании компонентов 39.5% RbF, 52% RbBr, 8.5% Rb₂CrO₄; температура плавления эвтектики P₈ составила 554°C при содержании компонентов 19.7% RbF, 55% RbBr, 25.3% Rb₂CrO₄. Остальные изученные трехкомпонентные системы представлены на рис. 6.

Впервые изучена *трехкомпонентная взаимная система* Li⁺,Rb⁺||Br⁻,CrO₄²⁻. Квадрат составов системы представлен на рисунке 7.

Подтверждение разбиения системы на вторичные фазовые треугольники доказано исследованием химического взаимодействия из твердой фазы гомогенизированной смеси эквивалентных количеств LiBr и Rb₂CrO₄. На кривой ДТА (рис. 8) отмечено четыре термоэффекта, один из которых экзоэффект, отвечающий реакции обмена (323°C) и три эндоэффекта – при 291°C, 392°C и 545°C.

На кривой ДТА охлаждения расплавленной смеси (рис. 9) фиксируется только два экзоэффекта: первый отвечает температуре ликвидуса (542°С), а второй – температуре плавления квазидвойной эвтектики (395°С).

Рисунок 7 – Квадрат составов трехкомпонентной взаимной системы Li⁺,Rb⁺||Br⁻,CrO₄²⁻

Рисунок 8 – Дериватограмма нагрева смеси 50% LiBr + 50% Rb₂CrO₄

Рисунок 9 – Дериватограмма охлаждения смеси 50% $LiBr + 50\% Rb_2 CrO_4$

Эквивалентный состав смеси LiBr и Rb_2CrO_4 , выдержанный при 365-370°С после расплавления, был закален во льду, измельчен и прописан на дифрактометре ARLX'TRA. На рентгенограмме смеси (рис. 10) после реакции отмечены рефлексы, соответствующие только двум фазам – бромиду рубидия и хромату лития (α -модификация), что подтверждает разбиение системы.

Рисунок 10 – Рентгенограмма смеси 50% $LiBr + 50\% Rb_2 CrO_4$

Также подтверждением разбиения являются данные ДТА квазибинарного сечения Li₂CrO₄-RbBr (рис. 11). Ликвидус на *T-х*–диаграмме представлен тремя кривыми кристаллизации – α - Li₂CrO₄, β -Li₂CrO₄ и RbBr, определены температура и состав эвтектики e_{40} 395, 17% LiBr и 83% Rb₂CrO₄. Аналогично квазидвойной системе, методом ДТА исследована стабильная секущая D_{к4}-RbBr (рис. 12), определена перевальная эвтектика e_{41} 530. Ликвидус представлен также двумя кривыми кристаллизации: соединение D_{к4} и RbBr.

Для выявления точек нонвариантных равновесий в фазовом треугольнике Li₂CrO₄-Rb₂CrO₄-RbBr исследован вначале политермический разрез A[25% RbBr + 75 %Li₂CrO₄] - B[25% RbBr + 75% Rb₂CrO₄], из *T*-*x* – диаграммы которого были найдены температуры плавления тройных эвтектик и соотношения двух компонентов – хроматов лития и рубидия в тройных эвтектиках E_{25} 527 и E_{26} 373 (рис. 13).

Рисунок 13 - T - x-диаграмма разреза AB системы Li⁺, Rb⁺ ||Br⁻, CrO₄²⁻

Исследованием разрезов, проходящих через проекции эвтектик и полюс кристаллизации – RbBr, выявлены составы тройных эвтектик: 10% RbBr, 74% Li₂CrO₄, 16% Rb₂CrO₄ – E₂₆ 373 и 24.5% RbBr, 35.25% Li₂CrO₄, 40.25% Rb₂CrO₄ – E₂₅ 527. Для выявления тройной эвтектики в фазовом треугольнике LiBr-Li₂CrO₄-D_{и4} был исследован политермический разрез K [25% Li₂CrO₄ + 75% LiBr] - L [25% Li₂CrO₄ + 75% RbBr]. Из *T-х* – диаграммы определены температуры плавления эвтектики (245°C) и перитектики (255°C). Исследованием

нонвариантного разреза $Li_2CrO_4 \rightarrow \overline{E}_{27}$ 245 $\rightarrow E_{27}$ 245 определен состав тройной эвтектики. Состав тройной перитектики не определялся и изображен в квадрате приближенно.

Изучение четырехкомпонентных систем приведено на примере системы KF-KI-K₂CrO₄-K₂WO₄. Развертка системы представлена на рис. 14. Для экспериментального исследования было выбрано политермическое сечение b[70 % KI + 30 % KF]-c[70 % KI + 30 % K₂CrO₄]-g[70 % KI + 30 % K₂WO₄], расположенное в поле иодида калия (рис. 15). В данном сечении исследовался разрез W [21% KF + 70% KI + 9% K₂WO₄]-X[21% KF + 70% KI + 9% K₂CrO₄], *T-х* – диаграмма которого (рис. 16) подтвердила наличие в системе непрерывных рядов твердых растворов, т.к. термоэффекты, соответствующие эвтектической кристаллизации отсутствуют. Аналогичным образом изучена четырехкомпонентная система NaF-NaI-Na₂CrO₄-Na₂WO₄, развертка составов представлена на рис. 17.

Рисунок 15 – Треугольник разреза bcg

Рисунок 17 – Развертка четырехкомпонентной системы NaF-NaI-Na₂CrO₄-Na₂WO₄

Также в работе исследованы две четырехкомпонентные взаимные системы. Экспериментально изучен секущий треугольник NaF-RbI-Rb₂CrO₄. Для исследования был выбран политермический разрез A[33%NaF + 67%RbI] - B[33%NaF + 67%Rb₂CrO₄] в объеме кристаллизации фторида натрия. Из диаграммы состояния разреза A-B подтверждено наличие в системе тройной эвтектики. Изучением разреза, выходящего из вершины фторида натрия и проходящего через проекцию тройной эвтектики \overline{E}_{23} 576, определены температура плавления и состав тройной эвтектики: E_{23} 576°C, NaF - 7.5%, RbI - 62.5%, Rb₂CrO₄ - 30%.

Исследован стабильный тетраэдр Na₂CrO₄-NaF-NaI–RbI, развертка граневых элементов которого представлена на рис. 18. В объеме кристаллизации компонента фторида натрия выбрано политермическое сечение u[25% NaF+75% NaI]-n[25% NaF+75% Na₂CrO₄]-s[25% NaF+75% RbI] (рис. 19). *T-х* – диаграмма разреза K[25% NaF+41.25% NaI+33.75% RbI]-L[25% NaF+41.25% NaI+33.75% Na₂CrO₄] представлена на рис. 20. Изучением разреза, выходящего из вершины u[25% NaF+75% NaI] и проходящего через направление \overline{E}_2^{-4} 439 (рис. 21), найдена проекция четверной эвтектики \overline{E}_2^{-4} 439 (рис. 22).

Аналогично изучены остальные стабильные тетраэдры, секущий треугольник и четырехкомпонентная взаимная система Na⁺,K⁺||Г,CrO₄²⁻,WO₄²⁻.

В четвертой главе проведен анализ данных, полученных в результате теоретического и экспериментального исследования пяти трехкомпонентных, одной трехкомпонентной взаимной, двух четырехкомпонентных и трех четырехкомпонентных взаимных систем из фторидов, бромидов, йодидов, хроматов и вольфраматов лития, натрия, калия и рубидия. Проведен анализ трансформации ликвидусов ряда трехкомпонентных и трехкомпонентных взаимных систем с учетом полученных в настоящей работе экспериментальных данных, выявленные закономерности изменения ликвидусов в этих рядах представляют значимость для прогнозирования фазовых равновесий неизученных систем данных рядов. Так, в системах ряда KHal- K_2 CrO₄- K_2 WO₄ (Hal – F, Cl, I) кристаллизуются непрерывные ряды твердых растворов, в ряду систем NaHal- $Na_2CrO_4-Na_2WO_4$ (Hal – F, Cl, I) бинарное соединение систем NaHal-Na₂WO₄ (Hal – F, Cl) выклинивается, однако, в связи с его отсутствием в системе Nal -Na₂WO₄, тройная система NaI-Na₂CrO₄-Na₂WO₄ представлена HPTP с минимумом. В ряду MF-MBr-M₂CrO₄ (M – Li, Na, K, Rb) системы LiF-LiBr-Li₂CrO₄ и NaF-NaBr-Na₂CrO₄ эвтектического типа переходят к системам KF-KBr- K_2 CrO₄ и RbF-RbBr-Rb₂CrO₄ с наличием соединения конгрузнтного типа плавления на бинарной стороне MF- M_2 CrO₄ (M – K, Rb), в результате чего в тройных системах помимо эвтектик образуются перитектики.

Также описаны фазовые равновесные состояния и определены объемы кристаллизации фаз для четырехкомпонентных систем и тетраэдров (рис. 22). Характеристики точек нонвариантного равновесия в экспериментально исследованных системах представлены в таблице 2.

Рисунок 22 – Схема расположения объемов кристаллизации систем MeF-MeI-Me₂CrO₄-Me₂WO₄ (Me – K, Na), Na⁺,K⁺|| CrO₄²⁻,WO₄²⁻ и стабильных тетраэдров NaF-Na₂CrO₄-RbI-Rb₂CrO₄, NaF-RbI-RbF-Rb₂CrO₄, NaF-Na₂CrO₄-NaI-RbI

Рисунок 22 (продолжение) – Схема расположения объемов кристаллизации систем MeF-MeI-Me₂CrO₄-Me₂WO₄ (Me – K, Na), Na⁺,K⁺|| CrO₄²⁻,WO₄²⁻ и стабильных тетраэдров NaF-Na₂CrO₄-RbI-Rb₂CrO₄, NaF-RbI-RbF-Rb₂CrO₄, NaF-Na₂CrO₄-NaI-RbI

Наименование системы	Харак	Содержание компонентов, экв.%				Темпе- ратура	$\Delta_{\rm m} {\rm H}_{\rm T}$
	рак- тер точки	1	2	3	4	плав- ления, ℃	кДж/кг (эксп.)
1	2	3	4	5	6	7	8
Трехкомпонентные системы							
NaF-Na ₂ CrO ₄ -Na ₂ WO ₄	R ₁	37	38	25		624	-
NaI-Na ₂ CrO ₄ -Na ₂ WO ₄	M ₃	36	26	38		499	202
KI-K ₂ CrO ₄ -K ₂ WO ₄	HPTP	-	-	-	-		-
KF-K ₂ CrO ₄ -K ₂ WO ₄	HPTP	-	-	-	-		-
RbF-RbBr-Rb ₂ CrO ₄	$\begin{array}{c} E_{24} \\ P_8 \end{array}$	39.5 19.7	52 55	8.5 25.3	_	522 554	-

Таблица 2 -	- Характеристики	точек нонвариантного	равновесия в	исследованных	системах
	1 1	1	1		

Продолжение таблицы 2

*								
1	2	3	4	5	6	7	8	
Трехкомпонентные взаимные системы								
	E ₂₅	-	24.5	35.25	40.25	527		
	e ₄₃	-	20	40	40	530		
\mathbf{L} \mathbf{H}^{+} $\mathbf{D}\mathbf{h}^{+}$ $\mathbf{D}\mathbf{r}^{-}$ $\mathbf{C}\mathbf{r}\mathbf{O}^{2-}$	E ₂₆	-	10	74	16	373		
L1 ,K0 \parallel Br ,CrO ₄	e ₄₂	-	17	83	-	395	-	
	E ₂₇ *	-	-	-	-	245		
	P9*	-	-	-	-	255		
τ	Іетырехн	сомпон	ентные с	системы				
KF-KI-K ₂ CrO ₄ -K ₂ WO ₄	HPTP	-	-	-	-	-	-	
NaF-NaI-Na ₂ CrO ₄ -Na ₂ WO ₄	HPTP	-	-	-	-	-	-	
Четыр	ехкомпо	нентни	ые взаим	ные сист	гемы			
$Na^+, K^+ \Gamma, CrO_4^{2-}, WO_4^{2-}$	HPTP	-	-	-	-	-	-	
	Стаби	льные т	греуголь	ники				
NaF-RbI-Rb ₂ CrO ₄	E ₂₃	7.5	62.5	30	-	576	-	
NaF-RbI-Na ₂ CrO ₄	E ₂₂	9	37	54	-	498	-	
Стабильные тетраэдры								
NaF-Na ₂ CrO ₄ -RbI-Rb ₂ CrO ₄	HPTP	-	-	-	-	-	-	
NoE DhE DhI Dh CrO	P_1^{\Box}	6	26.79	56.4	10.81	508	-	
	E_1^{\Box}	6	31.02	54.52	8.46	480	192	
Na ₂ CrO ₄ -NaF-NaI–RbI	E	3.5	25.57	37.15	33.78	439	-	

Е₂₇* - подана заявка на патент № 2021119315

 P_9^* - состав не определялся

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований получены следующие итоги:

1. Впервые проведено разбиение трехкомпонентной взаимной системы $Li^+,Rb^+||Br^-,CrO_4^{2-}$ и четырехкомпонентных взаимных систем: $Na^+,K^+||I^-,CrO_4^{2-}$, WO_4^{2-} , $Na^+,Rb^+||F^-,I^-,CrO_4^{2-}$, $Li^+,Rb^+||F^-,Br^-,CrO_4^{2-}$. Построены древа фаз всех исследованных систем, которые для систем $Li^+,Rb^+||Br^-,CrO_4^{2-}$, $Na^+,Rb^+||F^-,I^-,CrO_4^{2-}$, $Li^+,Rb^+||F^-,Br^-,CrO_4^{2-}$ являются линейными и представлены секущими треугольниками и стабильными тетраэдрами. Система $Na^+,K^+||I^-,CrO_4^{2-},WO_4^{2-}$ представлена одним симплексом. Кристаллизующиеся фазы в некоторых стабильных элементах систем подтверждены данными РФА.

2. Описано химическое взаимодействие в тройной взаимной системе $Li^+,Rb^+||Br^-,CrO_4^{2-}$. Изучено взаимодействие из твердой фазы в тройной необратимо-взаимной системе $Li^+,Rb^+||Br^-,CrO_4^{2-}$ для сплава, отвечающего по составу точке конверсии, а также отвечающего точкам конверсии систем $Li^+,Rb^+||Hal^-,CrO_4^{2-}$, где $Hal^- - F^-, Cl^-$. По кривым ДТА определены температуры начал экзотермических реакций, квазибинарных эвтектик и ликвидуса. Минимальная температура экзотермической реакции отмечена в системе $Li^+,Rb^+||Cl^-,CrO_4^{2-}$ (261°C). Кривая ТГ показала отсутствие потери массы в температурном диапазоне фазовых превращений.

3. Описано химическое взаимодействие для линий конверсии четырехкомпонентных взаимных систем $Na^+,K^+||\Gamma,CrO_4^{2-},WO_4^{2-},Na^+,Rb^+||F,\Gamma,CrO_4^{2-},Li^+,Rb^+||F,Br^-,CrO_4^{2-}$ по уравнениям, полученным на основе термодинамических расчетов для тройных взаимных систем. Осуществлен прогноз кристаллизующихся фаз для составов сплавов, отвечающим линиям конверсии с учетом данных о бинарных системах.

4. Впервые экспериментально исследованы фазовые равновесия в 5 трехкомпонентных системах (KI-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, KF-K₂CrO₄-K₂WO₄, NaF-Na₂CrO₄-Na₂WO₄, RbF-RbBr-Rb₂CrO₄), одной трехкомпонентной взаимной системе (Li⁺,Rb⁺||Br⁻,CrO₄²⁻), двух четырехкомпонентных системах (NaF-NaI-Na₂CrO₄-Na₂WO₄, KF-KI-K₂CrO₄-K₂WO₄), 3 стабильных тетраэдрах и 2 секущих треугольниках четырехкомпонентной взаимной си-Na⁺,Rb⁺||F⁻,I⁻,CrO₄²⁻ и четырехкомпонентной стемы взаимной системе Na⁺,K⁺||Г,CrO₄²⁻,WO₄²⁻. Осуществлен прогноз характеристик двух эвтектик трехкомпонентных систем по методу Мартыновой-Сусарева для оптимизации экспериментального исследования. Сравнение расчетных и экспериментальных данных показало максимальное среднее отклонение по содержанию компонентов 5.96 экв.% (система NaF-RbI-Na₂CrO₄), а по температурам плавления 1.06% (система NaF-RbI-Rb₂CrO₄).

5. Экспериментально измерены энтальпии плавления для следующих составов: 6% NaF + 54.52% RbI + 8.46% Rb₂CrO₄ + 31.02% RbF (480°C) и 36% NaI + 26% Na₂CrO₄ + 38% Na₂WO₄ (499°C) 192 и 202 кДж/кг соответственно. Данные низкоплавкие солевые смеси могут быть рекомендованы для разработки электролитов для среднетемпературного XИТ и флюсов различного назначения.

Таким образом, в результате выполненного исследования установлены характеристики сплавов, отвечающих точкам нонвариантных равновесий, которые в дальнейшем могут служить основой для разработки электролитов для среднетемпературного ХИТ, рабочих тел теплоаккумулирующих материалов и флюсов различного назначения. Информация о фазовых равновесиях в изученных системах представляет самостоятельный интерес как справочный материал.

С целью рекомендации к практическому применению в перспективе предполагается изучение дополнительных характеристик полученных низкоплавких солевых смесей: электропроводность, теплоемкость, теплопроводность, коэффициент объемного расширения.

ПО ТЕМЕ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ СЛЕДУЮЩИЕ РАБОТЫ:

Статьи в журналах, рекомендованных ВАК

1. Бабенко (Харченко) А.В. Фазовые равновесия в трехкомпонентных системах NaHal-Na₂CrO₄-Na₂WO₄ и KHal-K₂CrO₄-K₂WO₄ (Hal = Cl, I) / Бабенко А.В., Гаркушин И.К., Дворянова Е.М., Лихачева С.С. // Журн. неорг. химии. – 2015. – Т. 60. – № 9. – С. 1265-1269. DOI: 10.7868/S0044457X15060045

2. Бабенко (Харченко) А.В. Разбиение четырехкомпонентной взаимной системы Na,Rb||F,I,CrO₄ и исследование стабильного тетраэдра NaF–RbI–RbF– Rb₂CrO₄ / Бабенко А.В., Егорова Е.М., Гаркушин И.К. // Журн. неорг. химии. – 2019. – Т. 64. – № 7. – С. 746-753. DOI: 10.1134/S0044457X1907002X

Статьи в сборниках, тезисы докладов

3. Бабенко (Харченко) А.В. Фазовые равновесия в трехкомпонентной системе NaF-Na₂CrO₄-Na₂WO₄ / Бабенко А.В., Лихачева С.С., Бехтерева Е.М. //

X Междунар. Курнаковское совещание по физ.-хим. анализу. – Т. 1. – Самара, 2013. – С. 226-229.

4. Бабенко (Харченко) А.В. Исследование трехкомпонентной системы КІ-К₂СгО₄-К₂WO₄ / Бабенко А.В., Бехтерева Е.М. // Тез. докл. I Междунар. молодеж. науч. конф., посвящ. 65-летию основания Физ.-техн. ин-та. – Екатрг, 2014. – С. 217-218.

5. Бабенко (Харченко) А.В. Исследование фазовых равновесий в четырехкомпонентной системе KF-KI-K₂CrO₄-K₂WO₄ / Мат.-лы 53-й междунар. науч. студ. конф. МНСК-2015. – Новосибирск, 2015. – С. 94.

6. Бабенко (Харченко) А.В. Исследование четырехкомпонентной системы NaF-NaI-Na₂CrO₄-Na₂WO₄ / Бабенко А.В., Дворянова Е.М. // Тез. Докл. III Междунар. молодежн. Науч. конф.: Физ. Технолог. Инновац. ФТИ-2016. – Екатеринбург, 2016. – С. 330-331.

7. Бабенко (Харченко) А.В. Исследование стабильного тетраэдра NaF-Na₂CrO₄-RbI-Rb₂CrO₄ четырехкомпонентной взаимной системы Na,Rb||F,I,CrO₄ / Бабенко А.В., Дворянова Е.М., Пугачева Т.М. // Фундам. проблемы и приклад. асп. хим. науки и образ. Мат. Рос. научно-практич. конф. с междунар. участием. – Махачкала 2016. – С. 175-177.

8. Бабенко (Харченко) А.В. Исследование секущего треугольника NaF-RbI-Rb₂CrO₄ четырехкомпонентной взаимной системы Na,Rb||F,I,CrO₄ / Бабенко А.В., Дворянова Е.М., Пугачева Т.М. // Соврем. достиж. хим. наук: мат. Всеросс. юбилейн. конф. с междунар. участием, посвящ. 100-летию Перм. унта; – Пермь, 2016. – С. 39-41.

9. Babenko (Kharchenko) A.V. Chemical Interaction in the Na,Rb||F,I,CrO₄ Quaternary Reciprocal System / Babenko A.V., Egorova E.M., Garkushin I.K. // XXII International Conference on Chemical Thermodynamics in Russia, RCCT-2019 June 19-23, 2019, St.Petersburg, Russia: Abstracts. – St.Petersburg: Petropolis PH. Ltd, 2019. – P. 135.

10. Kharchenko A.V., Egorova E.M., Garkushin I.K. Study of phase equilibria in the Li_2CrO_4 -RbBr quasi-binary system / XVI International Conference on Thermal Analysis and Calorimetry in Russia RTAC-2020, book of abstracts. – P. 97.

Автор выражает благодарность научным руководителям д.х.н., профессору Гаркушину Ивану Кирилловичу и к.х.н., доценту Егоровой Екатерине Михайловне, а также сотрудникам кафедры общей и неорганической химии СамГТУ за помощь в работе над диссертацией.

> Автореферат отпечатан с разрешения диссертационного совета 24.2.377.03 (Д 212.217.05) при ФГБОУ ВО «Самарский государственный технический университет» (протокол № 7 от 12 октября 2021 г.) Заказ №. Тираж 100 экз. Форм. лист. 60×84/16. Отпечатано на ризографе.

ФГБОУ ВО «Самарский государственный технический университет» Отдел типографии и оперативной печати 443100, г. Самара, ул. Молодогвардейская, 244.