На правах рукописи

1. Aller

ЖУЧКОВ Георгий Михайлович

ОСОБЕННОСТИ ФАЗООБРАЗОВАНИЯ В СТАЛЯХ КОРПУСОВ РЕАКТОРОВ ВВЭР-440 И ВВЭР-1000 ПОСЛЕ ПЕРВИЧНОГО И ПОВТОРНОГО ОБЛУЧЕНИЙ

Специальность: 05.14.03 – Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Москва - 2021

Работа выполнена в Федеральном государственном бюджетном учреждении «Национальный исследовательский центр «Курчатовский институт»)

Научный руководитель:	Кулешова Евгения Анатольевна						
	доктор технических наук,						
	главный научный сотрудник						
	отдела аналитических методов исследования						
	материалов и перспективных технологий						
Официальные	НИЦ «Курчатовский институт», г. Москва.						
	Кудря Александр Викторович						
оппоненты:	доктор технических наук,						
	профессор кафедры металловедения и физики						
	прочности НИТУ «МИСиС», г. Москва;						
	Печенкин Валерий Александрович						
	кандидат физико-математических наук,						
	ведущий научный сотрудник АО «ГНЦ РФ -						
	ФЭИ», г. Обнинск Калужской обл.						
Ведущая организация:	Акционерное общество «Ордена трудового						
	красного знамени и Ордена труда ЧССР опытное						
	конструкторское бюро «ГИДРОПРЕСС»,						
	г. Подольск Московской обл.						

Защита диссертации состоится 26 октября 2021 г., начало в 14.00, на заседании диссертационного совета Д 520.009.07 на базе Национального исследовательского центра «Курчатовский институт» по адресу: 123182, г. Москва, пл. Академика Курчатова, д.1.

С диссертацией можно ознакомиться в библиотеке НИЦ «Курчатовский институт» и на сайте <u>www.nrcki.ru</u>

Автореферат разослан « ___ » ____ 2021 г.

Ученый секретарь

диссертационного совета Д 520.009.07,

кандидат физико-математических наук

ADUL

Д.А. Шкаровский

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

настоящее время энергоблоки с корпусными водоохлаждаемыми В ВВЭР составляют мировой реакторами основу атомной энергетики. В Российской утверждённой Правительством Федерации «Энергетической стратегии Российской Федерации на период до 2035 года» обеспечение энергетической стабильности определяется развитием атомной энергетики в том числе, на базе энергоблоков с реакторами на тепловых нейтронах. Для реакторных установок АЭС приоритетом является обеспечение безопасности на полный период их эксплуатации. Оценка ресурса корпусов реакторов (КР), несменяемыми элементами реакторных установок являющихся АЭС. И обоснование возможного продления назначенных сроков эксплуатации КР является важной задачей, как для обеспечения требований безопасности, так и для обеспечения экономического эффекта от продления срока службы КР.

Выполненная работа направлена на повышение надёжности прогнозных зависимостей изменения механических свойств материалов КР в процессе эксплуатации, уточнение действующих механизмов радиационного охрупчивания, связанных с радиационно-индуцированным фазообразованием и является актуальной в связи с принятием решений о продлении срока эксплуатации ядерных реакторов до 60 лет и более.

Цели и задачи исследования

Целью настоящей работы является получение результатов исследования радиационно-индуцированных изменений структуры сталей КР ВВЭР-440 и ВВЭР-1000 в процессе воздействия эксплуатационных факторов и восстановительных отжигов металла КР для уточнения действующих механизмов радиационного охрупчивания, определяющих ресурс КР и реакторной установки в целом, за весь назначенный и продленный период их эксплуатации.

Для достижения поставленных целей были решены следующие задачи:

обобщены и уточнены результаты исследования радиационно-BB3P-440, индуцированных элементов структуры КР ответственных за упрочнение В результате воздействия эксплуатационных факторов И восстановительного отжига (475°С/150ч.);

• изучены изменения фазового состава ОМ и МШ КР ВВЭР-440 в цикле «облучение – восстановительный отжиг – повторное облучение – повторный восстановительный отжиг – ускоренное облучение»; • проведён сравнительный анализ особенностей химического состава радиационно-индуцированных фаз в МШ и ОМ КР ВВЭР-440 с учётом развития сегрегационных процессов в ОМ при воздействии восстановительных отжигов;

• исследованы особенности радиационного фазообразования при облучении ОМ и МШ ОС КР ВВЭР-1000;

• выполнен анализ влияния ускоренного облучения на кинетику образования радиационно-индуцированных преципитатов и радиационных дефектов в сталях КР ВВЭР-1000;

• оценен вклад радиационно-индуцированных элементов структуры КР ВВЭР-1000 в изменение предела текучести после облучения с высоким и низким флаксом быстрых нейтронов;

• исследован химический состав радиационно-индуцированных Ni-Mn-Si преципитатов в материалах КР ВВЭР-1000 в широком интервале флюенсов и флаксов быстрых нейтронов при облучении в зависимости от химического состава сталей КР;

• выполнены сравнительные исследования трансформации структуры МШ ОС КР ВВЭР-1000 в цикле «первичное облучение – восстановительный отжиг – повторное облучение».

Научная новизна работы

впервые установлена причина постепенного снижения темпа радиационного охрупчивания сталей КР ВВЭР-440 в процессе эксплуатации с промежуточными восстановительными отжигами. заключающаяся В общей объёмной плотности закономерном снижении радиационноиндуцированных преципитатов в цикле «облучение – восстановительный отжиг – повторное облучение – повторный восстановительный отжиг – ускоренное облучение»;

• впервые в широком диапазоне флюенсов и флаксов быстрых нейтронов установлены закономерности радиационно-индуцированного фазообразования в ОС сталей российских КР ВВЭР-1000 с получением химического состава, дозовых зависимостей: объёмной плотности, размера, объёмной доли Ni-Mn-Si преципитатов и радиационных дефектов;

• показано, что в ускоренно облученных образцах МШ (с содержанием Ni>1,4 мас.%), вклад радиационного упрочнения в эффект флакса незначителен (по сравнению с вкладом от сегрегационных процессов).

Практическая значимость работы

• Полученные дозовые зависимости изменения параметров радиационно-индуцированных структурных элементов и установленные связи

между структурными и механическими характеристиками сталей ОМ и МШ КР ВВЭР-440 и ОС ВВЭР-1000 способствуют повышению обоснованности прогнозов безопасной эксплуатации КР в проектный и продленный период их эксплуатации.

• Установленные закономерности фазообразования в сталях КР ВВЭР-440 позволили подтвердить эффективность проведения повторных восстановительных отжигов для продления срока эксплуатации КР ВВЭР-440 до 60 лет.

• При исследовании МШ ОС КР ВВЭР-1000 (с содержанием Ni ~1,9 мас.%), первично – и повторно облученных (после восстановительного отжига по режиму 565°С/100ч.) установлено, что степень деградации их структуры идентична, а, следовательно, темп повторного радиационного охрупчивания МШ не выше темпа радиационного охрупчивания при первичном облучении.

Степень обоснованности и достоверности полученных научных результатов

Достоверность научных положений, результатов И выводов, диссертационной представленных В настоящей работе, обоснована совокупностью проведенных структурных исследований образцов-свидетелей, темплетов и трепанов из сталей КР с использованием современных аналитических методов (атомно-зондовой томографии (A3T), просвечивающей электронной оже-электронной микроскопии (ПЭМ), спектроскопии (OO)). a также расчётными данными, имеющими подтверждение результатами механических Результаты, полученные в работе, хорошо согласуются с испытаний. современными теоретическими представлениями, а также не противоречат научно-технической литературы. Результаты известным данным работы неоднократно были опубликованы в реферируемых международных журналах и апробированы на профильных научных конференциях, семинарах и школах.

Основные положения и результаты, выносимые на защиту

• Кинетика фазообразования в цикле «облучение – восстановительный отжиг – повторное облучение – повторный восстановительный отжиг – ускоренное облучение» для сталей КР ВВЭР-440 по данным, полученным методом атомно-зондовой томографии (АЗТ);

• Роль меди и фосфора в изменении состава радиационноиндуцированных преципитатов в цикле «облучение – отжиг – повторное облучение – повторный отжиг – ускоренное облучение» для сталей КР ВВЭР-440 по данным АЗТ анализа; • Дозовые зависимости и химический состав радиационноиндуцированных Ni-Mn-Si преципитатов в зависимости от условий облучения и содержания Ni в OC сталей КР ВВЭР-1000;

• Идентичность структурно-фазовых превращений в процессе первичного и повторного после восстановительного отжига (565°С/100ч.) облучения МШ КР ВВЭР-1000 с высоким содержанием Ni.

Личный вклад автора

• автором лично выполнены исследования сталей КР ВВЭР-440 и ВВЭР-1000 с использованием методики АЗТ на всех циклах эксперимента, проведена систематизация, статистическая обработка, выполнены соответствующие оценки и расчёты результатов АЗТ анализа;

• автор принимал непосредственное и активное участие в анализе и интерпретации полученных экспериментальных данных и их корреляции с механическими характеристиками.

Структура и объем диссертации

Диссертация состоит из введения, 4 глав, заключения и списка литературы из 146 наименований, содержит 117 страниц, 37 таблиц и 42 рисунка.

Апробация работы

Результаты диссертации опубликованы в 16 статьях и докладах, из них 8 публикации в ведущих рецензируемых изданиях, рекомендованных в действующем перечне ВАК и 8 в материалах и тезисах конференций. Результаты исследования были доложены и обсуждены на 3 международных и 5 российских научно-практических конференциях.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель работы и решаемые задачи, научная новизна и практическая значимость, изложены основные положения, выносимые на защиту.

В первой главе «Эволюция структуры и свойств сталей корпусов реакторов типа ВВЭР в процессе эксплуатации. Литературный обзор» рассмотрены проблемы ресурсоспособности корпусов реакторов (КР) ВВЭР как несменяемого элемента основного оборудования, что имеет важное значение при обосновании ресурса КР на большую длительность. Поэтому получение и дальнейшее развитие представлений об эволюции структурно-фазового состояния сталей КР в результате влияния эксплуатационных факторов является актуальным.

Рассмотрены особенности радиационного охрупчивания как основных металлов (ОМ), так и металлов сварных швов (МШ) КР ВВЭР-440 и ВВЭР-1000 в

процессе облучения и восстановительных отжигов, зависящие: от накопленного флюенса быстрых нейтронов, времени облучения, а также от особенностей химического состава сталей. Анализ особенностей фазообразования в сталях КР в процессе эксплуатации, а также после восстановительных отжигов, позволил обосновать направление исследования диссертационной работы. В дальнейших диссертационной работе был исследованиях В проведен комплекс микроструктурных исследований (АЗТ, ПЭМ, ОЭС), позволивший получить дополнительные данные, подтверждающие ранее разработанные аналитические зависимости изменения свойств, что дало возможность повысить достоверность прогноза изменения свойств.

Во второй главе «Материалы и методы исследования» приведен химический состав конкретных исследованных материалов сталей основных металлов 15ХМФА КР ВВЭР-440, 15Х2НМФА-А КР ВВЭР-1000 и их сварных соединений, описание методик исследований, использованных в работе. Химический состав (обобщенный) образцов исследованных сталей и условия облучения быстрыми нейтронами приведены в Таблицах 1-3.

Таблица 1 – Химический состав образцов исследованных МШ и ОМ КР ВВЭР-440

Моторион	Содержание элемента, % масс.									
материал	С	Mn	Si	Ni	Cr	Mo	V	S	Р	Cu
MIII	0,04-	0,86-	0,37-	0,14-	1,38-	0,46-	0,13-	0,003-	0,025-	0,11-
IVIIII	0,08	1,05	0,44	0,25	1,73	0,53	0,24	0,016	0,039	0,18
OM	0,16-	0,43-	0,29-	0,13-	2,57-	0,64-	0,19-	<0,003-	0,010-	0,11-
UM	0,23	0,50	0,34	0,30	2,95	0,75	0,30	0,016	0,014	0,16

Таблица 2 -	- Химический	состав образцов	исследованных	МШ и	ОМ КР	BB ₃ P-	-1000
,		1 1	7 1				

Материал	Содержание элемента, % масс.									
материал	С	Mn	Si	Ni	Cr	Mo	V	S	Р	Cu
MIII	0,06-	0,73-	0,26-	1,38-	1,69-	0,57-	0,01-	0,007-	0,003-	0,02-
IVIIII	0,08	1,1	0,35	1,94	2,01	0,68	0,03	0,019	0,011	0,08
МШ ОМ	0,12-	0,38-	0,23-	1,1-	1,74-	0,45-	0,08-	0,0012-	0,006-	0,04-
	0,18	0,51	0,33	1,34	2,23	0,59	0,14	0,016	0,01	0,06

+ 100	Таблица 3 – Парамо	етры облучения ис	следованных МШ и	A OM KP BBЭP	-440, -1000
-------	--------------------	-------------------	------------------	--------------	-------------

Облучение (состояние)	Флюенс, ·10 ²² м ⁻²	Флакс, ·10 ¹⁴ м ⁻² с ⁻¹					
материалы КР ВВЭР-440							
первичное (I_1), повторное ($I_1A_1I_2$),	17 100	2 15					
третий цикл облучения $I_1A_1I_2A_2I_3$	17 - 109	2 - 15					
ускоренное облучение (I ₁ A ₁ I ₂ A ₂ I _{3уск})	19 - 75	640 - 1800					
материалы КР ВВЭР-1000							
образцы-свидетели (ОС)	6 - 101	2 - 20					
ускоренное облучение (в ИР-8)	28 - 79	500 - 1700					

Образцы стали были исследованы в различных состояниях: после первичного облучения, первичного и повторного восстановительного отжига, после повторного облучения, ускоренного облучения в исследовательском реакторе ИР-8 с различными параметрами облучения. Состояния, в которых стали были исследованы в данной работе, представлены в соответствующих главах. Следует отметить, что были исследованы как образцы-свидетели (ОС), облученные в составе энергетических реакторов, так и ускоренно облучённые образцы в исследовательском реакторе ИР-8 с флаксом в 100-200 раз превышающем скорость облучения в составе ОС. Это позволило сравнить влияние эффекта флакса на изменение структурно-фазового состояния изученных сталей.

Для оценки структурного состояния и свойств исследуемых сталей использованы следующие методы:

- Атомно-зондовая томография (АЗТ) с использованием атомного зонда Сатеса LEAP 4000 HR для оценки объёмной плотности, размера и химического состава радиационно-индуцированных элементов структуры (преципитатов);
- Просвечивающая (ПЭМ) электронная микроскопия с использованием просвечивающего электронного микроскопа FEI Titan 80-300 для оценки плотности и размера радиационно-индуцированных преципитатов и радиационных дефектов дислокационных петель;
- Оже-электронная спектроскопия (ОЭС) с использованием сканирующего оженанозонда Physical Electronics PHI 700 для определения уровня зернограничных сегрегаций примесей в границах зёрен материалов;
- Фрактографические исследования с использованием растрового электронного микроскопа Zeiss Supra VP40 для определения доли хрупкого межзеренного разрушения в изломах образцов Шарпи, испытанных на ударный изгиб, что коррелирует с уровнем зернограничных сегрегаций примесей в материале;

• Испытания на статическое растяжение определения для изменений прочностных испытательной характеристик на универсальной машине Z030 Zwick/Roell (результаты механических испытаний получены под руководством к.т.н. Д.А. Журко).

Наиболее полно проведены исследования радиационно-индуцированных элементов структуры методом АЗТ. При этом исследования с использованием методики АЗТ проведены, начиная от пробоподготовки, анализа трёхмерных реконструкций исследуемых материалов в программной среде IVAS 3.6.12, получения статистически достоверных данных, заканчивая анализом и сопоставлением с данными, полученными ПЭМ и ОЭС.

С учетом особенностей и ограничений при АЗТ анализе исследованных в работе материалов были получены характеристики наноразмерных элементов структуры, хорошо коррелирующие с исследованиями другими методами и с механизмами деградации структуры и свойств материалов под облучением.

В третьей главе «Особенности фазообразования в металле сварного шва и основного металла корпусов реакторов ВВЭР-440 в цикле «Облучение - Отжиг - Повторное облучение - Повторный отжиг - Ускоренное облучение» исследованы радиационно-индуцированные элементы структуры, упрочнение результате ответственные 3a В первичного облучения И восстановительных отжигов сталей темплетов МШ и ОМ КР ВВЭР-440 в следующих состояниях: после первичного облучения (I₁), последующего восстановительного отжига (I_1A_1) по штатному режиму (475°С/150ч.), повторного облучения (I₁A₁I₃), повторного восстановительного отжига по штатному режиму $(I_1A_1I_2A_2)$ а также третьего цикла ускоренного облучения $(I_1A_1I_2A_2I_{3vck})$. Кроме того, исследованы трепаны МШ и ОМ КР ВВЭР-440, выведенного после 45 лет эксплуатации, в состояниях после длительного воздействия рабочей температуры (состояние Т для ОМ и МШ), первичного облучения (I₁ для ОМ) и повторного после восстановительного отжига реакторного облучения (I₁A₁I₂A₂I₃ для МШ).

Было установлено:

При первичном облучении в МШ и ОМ происходит образование • первичных радиационно-индуцированных преципитатов на основе Cu (легированных P-Si-Ni-Mn, см. Рисунок 3). После первого восстановительного отжига наблюдается их частичное растворение с коагуляцией оставшихся нерастворенными медных фаз. При этом медь полностью не возвращается в матрицу, что оказывает влияние на динамику последующего образования преципитатов во всех циклах «облучение-отжиг-облучение», поскольку вновь выделяющиеся преципитаты образуются из твёрдого раствора, обедненного содержанием меди, которая оказалась как бы «замороженной» в остаточных первичных преципитатах.

• При повторном и последующих облучениях после восстановительных отжигов в МШ образуются «вторичные» и «третичные» радиационноиндуцированные преципитаты на основе Cu-P (легированные Si-Ni-Mn, Рисунок 3 а), а в ОМ – преципитаты существенно меньшей плотности (Рисунок 1 б) на основе Cu и в меньшей степени легированные Si-Ni-Mn (см. Рисунок 3 б). При этом для МШ, в отличие от ОМ, наблюдается зависимость плотности преципитатов при повторном облучении с ростом дозы облучения.

На Рисунке 1 показаны дозовые зависимости объёмной плотности радиационно-индуцированных преципитатов на всех стадиях в циклах «облучение-отжиг-облучение». При АЗТ анализе было принято разделение

преципитатов на поколения: первичные (в результате первичного облучения), остаточные (после восстановительного отжига), вторичные и третичные – сформированные при повторном облучении после восстановительного отжига.

Рисунок 1 – Дозовые зависимости объёмной плотности радиационно-индуцированных преципитатов в МШ (а) и ОМ (б) на всех циклах облучения КР ВВЭР-440

На Рисунке 2 представлены дозовые зависимости среднего размера преципитатов в МШ и ОМ в исследованных состояниях.

Из Рисунка 2 видно, что радиационно-индуцированные преципитаты (вторичные, третичные) при всех циклах облучения имеют меньший размер, чем первичные остаточные преципитаты, размер которых несколько возрастает в циклах облучения за счёт дополнительного включения атомов P-Si-Ni-Mn.

Рисунок 2– Дозовые зависимости среднего размера преципитатов в МШ (а) и ОМ (б) КР ВВЭР-440 в различных состояниях

Кроме объёмной плотности и средних размеров также были исследованы химические составы радиационно-индуцированных преципитатов с использованием методики АЗТ.

Ha 3 Рисунке представлены гистограммы распределения химических составов радиационно-индуцированных преципитатов (первичных/вторичных/третичных после И остаточных первичного отжига) в исследованных МШ и ОМ КР ВВЭР-440.

Сравнение состава вторичных и третичных преципитатов в ОМ и МШ показывает, что концентрация меди в преципитатах в случае ОМ ~ в 2 раза выше, чем в МШ (см. Рисунок 3). Содержание фосфора в преципитатах в ОМ при этом

значительно ниже, чем в МШ, что связано с переходом фосфора в зернограничные сегрегации в ОМ, которые в МШ при данном флюенсе практически еще не образуются из-за особенностей структуры МШ (наличие зернограничных выделений избыточного α -феррита с меньшей растворимостью фосфора в легированном α -Fe). При этом, суммарная концентрация Si+Ni+Mn во вторичных преципитатах увеличивается с увеличением флюенса быстрых нейтронов как в ОМ, так и в МШ (Рисунок 3 а,б).

Рисунок 3 – Химические составы радиационно-индуцированных преципитатов первичных, вторичных и третичных в МШ (а) и в ОМ (б), остаточных в МШ (в) и в ОМ (г) на всех циклах «облучение-отжиг-облучение»

Изменение химического состава преципитатов в ОМ и МШ обусловлено изменением концентрации фосфора в матрице стали в циклах «облучение-отжиг-облучение» (см. Рисунок 4).

Анализ содержания фосфора в матрицах ОМ и МШ показывает, что при восстановительных отжигах, особенно в ОМ, в температурном интервале

максимального развития отпускной хрупкости (475°С) при котором проводится восстановительный отжиг МШ ВВЭР-440, фосфор не возвращается полностью в матрицу в процессе растворения радиационно-индуцированных преципитатов (см. Рисунок 4), а сегрегирует на границы зёрен.

Рисунок 4 – Усредненный состав Fe-матриц твёрдого раствора по фосфору в исследованных образцах МШ (а) и ОМ (б) ВВЭР-440 в различных состояниях

Наблюдается (Рисунок 4) общая тенденция к снижению матричного содержания фосфора с ростом флюенса. Это обусловлено тем, что в ОМ в процессе облучения происходит накопление зернограничных сегрегаций фосфора (см. Рисунок 5), уровень которых тем выше, чем выше накопленный флюенс быстрых нейтронов.

Рисунок 5 – Гистограммы распределения концентрации фосфора в границе зерна в ОМ в состояниях после повторного облучения до $F_1=70\cdot10^{22}m^{-2}$ и $F_2=109\cdot10^{22}m^{-2}$ в сравнении с состоянием после повторного восстановительного отжига

Представленные на Рисунке 5 гистограммы распределения фосфора в границах зёрен ОМ по данным оже-электронной спектроскопии (ОЭС),

свидетельствуют о том, что в ОМ, находящемся под воздействием температуры при штатном восстановительном отжиге по режиму 475°С/150ч., происходит значимое повышение зернограничных сегрегаций фосфора.

Сравнение изменений плотности преципитатов на всех циклах «облучение-отжиг-облучение» (остаточных и радиационно-индуцированных, см. Рисунки 1 а,б) показывает, что общая плотность преципитатов постепенно снижается после каждого этапа облучения (см. Рисунок 6).

Рисунок 6 – Типичные для МШ и ОМ АЗТ карты распределения основных элементов в радиационно-индуцированных преципитатах в различных состояниях: I₁, I₁A₁, и в I₁A₁I₂A₂I₃

Роль меди в радиационном охрупчивании как ОМ, так и МШ также уменьшается вследствие того, что ее участие в формировании радиационноиндуцированных преципитатов снижается и заканчивается при втором цикле «облучение-отжиг». Роль фосфора, наоборот, усиливается со второго цикла «облучение-отжиг», поскольку в МШ фосфор участвует в образовании преципитатов, а в ОМ – образует зернограничную сегрегацию. В целом, в процессе продления срока службы КР BB3P-440 за счет проведения восстановительных отжигов, из-за снижения общей плотности преципитатов на каждом из циклов «облучение-отжиг», наблюдается снижение темпа его радиационного охрупчивания (см. Рисунок 7). При этом плотность преципитатов в ОМ существенно ниже на всех этапах эксплуатации, чем в МШ, что и обуславливает более низкий темп радиационного охрупчивания ОМ по сравнению с МШ.

Рисунок 7 – Схема изменения радиационного охрупчивания для МШ КР ВВЭР-440 за счёт проведения восстановительных отжигов

В четвертой главе «Особенности радиационного охрупчивания металлов КР ВВЭР-1000» расширены и уточнены на широком круге материалов МШ и ОМ КР ВВЭР-1000 особенности фазообразования в условиях облучения, характерных для образцов-свидетелей (ОС) и ускоренно облученных образцов с использованием метода атомно-зондовой томографии. Проведение исследования фазообразования в ускоренно облученных образцах было необходимо в связи продлением срока службы реакторов типа ВВЭР до 60 лет эксплуатации.

Известны два механизма радиационного охрупчивания: упрочняющий (обусловленный образованием радиационно-индуцированных преципитатов и дислокационных петель, оказывающих совместное влияние на повышение предела текучести) и неупрочняющий (обусловленный образованием зернограничных сегрегаций, приводящий к сдвигу критической температуры хрупкости без изменения предела текучести).

Стали КР BB3P-1000 по сравнению co сталями КР **BBЭP-440** характеризуется повышенным содержанием никеля, что приводит к отличию кинетики радиационного упрочнения ВВЭР-1000 от кинетики радиационного упрочнения BBЭP-440 за счёт различных механизмов образования радиационноиндуцированных преципитатов. Никель является основным преципитатобразующим элементом, кроме того, проявляющим склонность к сегрегированию на границы зёрен, а также способствующим сегрегированию фосфора на границы зёрен, усиливая общее радиационное охрупчивание за счёт действия второго неупрочняющего механизма. Поэтому МШ является критичным элементом КР с точки зрения общего радиационного охрупчивания.

В работе исследовано влияние содержание никеля на различных уровнях: низком (1,1-1,34) мас.%; среднем (1,35-1,5) мас.% и высоком (1,6-1,94) мас.%. на темп образования радиационно-индуцированных преципитатов.

На Рисунке 8 представлены типичные АЗТ карты распределения преципитат-образующих элементов в исследованных ОМ и МШ КР ВВЭР-1000.

Рисунок 8 – типичные АЗТ карты распределения преципитат-образующих элементов: а) карта распределения элементов в объёме, б) распределение элементов Ni-Si-Mn в области, содержащей преципитат

Видно, что в материалах КР ВВЭР-1000 образуются преципитаты на основе Ni-Mn-Si. На Рисунке 9 представлены результаты АЗТ анализа химического состава радиационно-индуцированных преципитатов в МШ КР ВВЭР-1000 при облучении в различных условиях, нанесенные на тройную диаграмму состояния Ni-Mn-Si. На тройную диаграмму также нанесены соединения с известным химическим составом из литературных данных.

Из Рисунка 9 видно, что независимо от условий облучения (при разных флюенсах и флаксах), а также химического состава сталей, состав Ni-Mn-Siфазовых выделений (преципитатов) на основе никеля занимает довольно узкую область составов. Средний химический состав для выбранного массива точек близок к 45% Ni, 33% Si и 22% Mn, что может являться соединением типа Ni₂Si, в котором часть атомов Ni заменена атомами Mn и иметь вид Ni_{1.33}Mn_{0.67}Si.

Рисунок 9 – Тройная диаграмма состояния Ni-Mn-Si с областью составов радиационно-индуцированных Ni-Mn-Si преципитатов в сталях КР ВВЭР-1000

Были также исследованы такие параметры радиационно-индуцированных элементов структуры как: объёмная плотность, размер и объёмная доля преципитатов, а также размер и объёмная плотность радиационных дефектов – дислокационных петель.

На Рисунке 10а показаны дозовые зависимости изменения плотности Ni-Mn-Si преципитатов в широком диапазоне флюенсов быстрых нейтронов в зависимости от содержания Ni в стали.

Из Рисунка 10в видно, что размер радиационно-индуцированных преципитатов не зависит от содержания Ni в стали и несколько растёт с дозой

облучения. При этом при ускоренном облучении образуются преципитаты меньшего размера, что очевидно связано меньшим временем протекания процессов фазообразования за счёт термической и радиационно-индуцированной диффузии.

Из Рисунка 10а видно, что с ростом флюенса быстрых нейтронов плотность преципитатов возрастает при всех концентрациях, характерных для материалов КР BB3P-1000. При этом для ΜШ c высоким Ni (1, 6 - 1, 95)мас.% наблюдается максимальный темп накопления радиационно-индуцированных преципитатов по сравнению с МШ со средним Ni (1,35-1,5) мас.% и ОМ с низким (1,1-1,34) мас.%.

Объёмная плотность дислокационных петель в исследованных сталях КР ВВЭР-1000 не зависит от химического состава исследованных сталей, флакса при облучении в исследованном интервале флюенсов и флаксов быстрых нейтронов и описывается единой дозовой зависимостью, близкой к линейной. Размер дислокационных петель не претерпевает значительных изменений с увеличением флюенса и составляет 3-4 нм.

Поскольку наблюдается корреляция между плотностью радиационноиндуцированных преципитатов и содержанием никеля и марганца в стали, то полученные значения плотности преципитатов были нормированы на произведение содержания Ni и Mn в стали (см. Рисунок 10б). В этом случае статистический анализ полученных результатов с использованием теста Чоу показал, что зависимости плотности радиационно-индуцированных преципитатов для МШ и OM с содержанием никеля (1,1-1,9) мас.% значимо не различаются и описываются единой дозовой зависимостью.

Исследовано также влияние скорости облучения на нормированную дозовую зависимость объёмной плотности Ni-Mn-Si-преципитатов и радиационных дефектов – дислокационных петель.

Рисунок – 11 Дозовые зависимости объёмной плотности радиационно-индуцированных преципитатов в МШ (а) и ОМ (б), а также объёмной доли (в) в МШ КР ВВЭР-1000

Образцы МШ, облученные в составе ОС, характеризуются несколько большей плотностью преципитатов, чем при ускоренном облучении (Рисунок 11а). Кроме того, результаты исследований методом АЗТ показывают, что размер радиационно-индуцированных преципитатов в МШ при ускоренном облучении значительно ниже, чем при облучении в составе ОС (Рисунок 10в).

Статистическая обработка результатов исследования с использованием теста Чоу показала отсутствие влияния флакса на объёмную плотность

преципитатов в ОМ с содержанием никеля (1,1-1,3) мас.% (см. Рисунк 11б). При этом объёмная доля преципитатов при ускоренном облучении МШ (Рисунок 11в) значимо ниже по сравнению с ОС МШ (в основном, за счёт меньшего их размера при ускоренном облучении). Результаты исследований плотности дислокационных петель в исследованных сталях корпусов реакторов ВВЭР-1000, полученные по результатам ПЭМ-исследований представлены на Рисунке 12.

Рисунок 12 – Дозовая зависимость объёмной плотности дислокационных петель

Из Рисунка 12 видно влияние флакса на объёмную плотность радиационных дефектов — дислокационных петель не зависит от химического состава исследованных сталей (МШ, ОМ) и флакса при облучении и описывается единой дозовой зависимостью, близкой к линейной.

Полученные в работе параметры радиационно-индуцированных упрочняющих элементов структуры (преципитатов и дислокационных петель) были использованы в уравнении Орована для оценки их вклада в изменение радиационного упрочнения сталей КР, облученных с разным флаксом (ОС и ускоренно облучённых).

Уравнение Орована: $\Delta \sigma_i = \alpha_i \cdot \mathbf{M} \cdot \mathbf{G} \cdot \mathbf{b} \cdot \sqrt{\rho_i \cdot d_i}$

где α_i – константы прочности барьеров, М – фактор Тейлора, принятый равным 3,06, G – модуль сдвига, принятый равным 81,6 ГПа, b – модуль вектора равный 0,249 объемная Бюргерса, HM, ρ_i плотность радиационно- индуцированных элементов структуры, d_i – средний размер радиационноиндуцированных элементов структуры. Константы прочности барьеров для дислокационных петель и радиационно-индуцированных преципитатов приняты равными соответственно 0,33 и 0,08. Константы материала и прочности барьеров приняты в соответствии с литературными данными.

На Рисунке 13 представлена дозовая зависимость изменения предела текучести, рассчитанная по уравнению Орована с нанесенными значениями

измеренных экспериментально изменений пределов текучести МШ ОС КР ВВЭР-1000.

Рисунок 13 – Дозовая зависимость изменения предела текучести МШ ОС КР ВВЭР-1000

Из Рисунка 13 видно, что расчётные значения предела текучести (на основе данных A3T) хорошо коррелируют c экспериментальными значениями, определенными по испытаниям на статическое растяжение. Поскольку объёмные радиационно-индуцированных преципитатов ΜШ КР **BBЭP**-1000 В доли отличаются в материалах, облученных в составе ОС и ускоренно облучённых, была проверена статистическая значимость изменения предела текучести в разных условиях облучения (Рисунок 14, расчётные значения вкладов в $\sigma_{0,2}$).

Рисунок 14 – Расчётные значения вкладов в сдвиг предела текучести (без нормировки на (Ni·Mn). Для МШ КР ВВЭР-1000 с содержанием Ni 1,4-1,9 мас.%, и Mn 0,7-1,1 мас. %

Рисунок 15 – Расчётные значения вкладов в сдвиг предела текучести с нормировкой на (Ni·Mn). Для МШ КР ВВЭР-1000 с содержанием Ni 1,4-1,9 мас. %, и Mn 0,7-1,1 мас.%

Результат проведенного статистического анализа с помощью теста Чоу к данным, представленным на Рисунках 14-15 показал, что расчётные значения вклада в сдвиг предела текучести по результатам исследования ОС и ускоренно облученных образцов могут быть описаны единой зависимостью. Таким образом, показано, что в ускоренно облученных образцах МШ (с содержанием Ni>1,4 мас.%), вклад радиационного упрочнения в эффект флакса незначителен (по сравнению с вкладом от сегрегационных процессов).

Продление срока службы КР ВВЭР-1000 с высоким содержанием Ni, демонстрирующих повышенный темп радиационного охрупчивания, реализуется за счёт проведения восстановительного отжига (565°С/100час). Ранее в НИЦ «Курчатовский институт» был проведен ряд экспериментов по установлению эффективности восстановительного отжига на повторно ускоренно облученных образцах.

В данной работе впервые были проведены АЗТ, ПЭМ и оже-спектральные исследования упрочняющих компонент микроструктуры И уровня зернограничных сегрегаций ОС МШ Балаковской АЭС-1 в двух структурных состояниях: первичное облучение и повторное (после восстановительного отжига по режиму 565°С/100 час) с близкими значениями флюенса и флакса. Это было необходимо для подтверждения полученных ранее результатов на ускоренно облученных материалах, a также получения данных, подтверждающих выполнение структурного критерия: отсутствия увеличения темпа радиационноиндуцированной деградации структуры в результате повторного облучения образцов ОС.

В Таблице 4 представлены характеристики радиационно-индуцированной структуры (по результатам АЗТ, ПЭМ анализа) при первичном и повторном облучении МШ в составе ОС с высоким содержанием Ni (~1,9 мас.%).

Таблица 4 – Характеристики радиационно-индуцированной структуры при первичном (I₁) и повторном (I₁AI₂) облучении ОС МШ КР ВВЭР-1000 с высоким содержанием Ni (~1,9 мас.%)

	Пистон			Преципитаты								
Состояние F, ·10 ²² м ⁻²	петли		Объёмная плотность, ·10 ²³ м ⁻³		Размер, нм		химический состав преципитатов, ат. %					
	-2 M	Объёмная плотность, ·10 ²¹ м ⁻³	Размер нм	ПЭМ	A3T	ПЭМ	A3T	Ni	Mn	Si		
I ₁	49,1	4,1±0,8	3,9±0,7	4,0±1,0	4,2±0,8	2,3±0,1	2,3±0,1	48,5	24,5	26		
I ₁ AI ₂	52,3	4,3±0,6	4,0±0,8	4,2±0,6	3,6±0,5	2,4±0,1	2,2±0,1	47	32	19,5		

Из Таблицы 4 видно, что параметры радиационно-индуцированных преципитатов и дислокационных петель после первичного и повторного (после восстановительного отжига) облучения близки, что свидетельствует об их близком вкладе в радиационное упрочнение при первичном и повторном облучении.

На Рисунке 16 представлены данные оже-электронной спектроскопии уровня зернограничной сегрегации фосфора в МШ, образовавшейся в результате первичного и повторного облучения при рабочей температуре КР ВВЭР-1000 Балаковской АЭС, блок 1.

Рисунок 16 – Частотная гистограмма распределения фосфора в границах зёрен МШ КР ВВЭР-1000 Балаковской АЭС, блок 1 в различных состояниях

Из Рисунка 16 видно накопление фосфора при первичном облучении (I₁), возврат к исходному состоянию уровня зернограчной сегрегации после восстановительного отжига (I₁A), и аналогичное по уровню накопление зернограничной сегрегации фосфора после повторного облучения (I₁AI₂).

Таким образом, проведенные сравнительные исследования структурных превращений в первично – и повторно облученных ОС МШ ВВЭР-1000 с высоким содержанием Ni (после восстановительного отжига по режиму 565°С/100ч.) показали, что степень деградации их структуры после облучения до близких доз облучения идентична, а, следовательно, темп повторного радиационного охрупчивания МШ должен быть не выше темпа радиационного охрупчивания.

ЗАКЛЮЧЕНИЕ

Для оценки ресурсоспособности сталей КР, а также для обоснования продления их срока службы проведены комплексные исследования методами АЗТ и ПЭМ закономерностей фазообразования в сталях КР ВВЭР-440 и ВВЭР-1000 в процессе облучения в широком диапазоне флюенсов быстрых нейтронов (6-109)· 10^{22} м⁻² и флаксов (2-1700· 10^{14} м⁻²·c⁻¹), а также возврат их структурно-фазового состояния после восстановительных отжигов. При этом показано:

Для сталей КР ВВЭР-440

1. При первичном восстановительном отжиге МШ происходит неполное растворение первичных радиационно-индуцированных Си-преципитатов, состав которых В циклах «облучение-отжиг-облучение» остаётся практически постоянным, а размер несколько увеличивается. При этом медь не полностью возвращается в Fe-матрицу, что оказывает влияние на кинетику последующей преципитации при повторных облучениях В циклах «облучение-отжигоблучение».

2. Радиационное охрупчивание МШ, наряду с образованием радиационных дефектов, обусловлено выделением медно-обогащенных преципитатов на основе Cu, состав которых дополнительно обогащён Si-Ni-Mn и в циклах «облучение-отжиг-облучение» всё в большей степени обогащается фосфором при постепенном уменьшении в них концентрации меди.

3. Радиационно-индуцированные преципитаты в ОМ, обогащенные Si-Ni-Mn, в циклах «облучение-отжиг-облучение», в отличие от преципитатов в МШ, в меньшей степени обогащаются фосфором, поскольку, начиная со второго цикла облучения, фосфор из твёрдого раствора начинает интенсивно переходить в зернограничные сегрегации, обедняя матрицу.

4. Последовательное наблюдаемое снижение темпа радиационного охрупчивания МШ в циклах «облучение-отжиг-облучение» обусловлено закономерным снижением объёмной плотности преципитатов, выделяющихся при каждом последующем облучении после восстановительных отжигов.

5. Более низкий темп радиационного упрочнения и охрупчивания ОМ по сравнению с МШ обусловлен более низкой суммарной объёмной плотностью в нём первичных и образующихся в циклах «облучение-отжиг-облучение» радиационно-индуцированных преципитатов.

Для сталей КР ВВЭР-1000:

6. Для МШ (с содержанием Ni>1,35%) бо́льший темп радиационного охрупчивания по сравнению с темпом радиационного охрупчивания ОМ и МШ с меньшим содержанием Ni (<1,35%) обусловлен как образованием под облучением Ni-Mn-Si-преципитатов с бо́льшей плотностью при близкой плотности радиационных дефектов, а также накоплением бо́льшего уровня зернограничной сегрегации в МШ по сравнению с ОМ в процессе облучения.

7. Независимо от параметров облучения (флюенса и флакса быстрых нейтронов), а также от химического состава сталей, средний химический состав Ni-Mn-Si-преципитатов неизменен и близок к атомному составу $Ni_{1.33}Mn_{0.67}Si$, что может являться соединением типа Ni_2Si , в котором часть атомов Ni заменена атомами Mn.

8. Для ОМ и МШ, характеризующихся содержанием никеля (1,1-1,3) мас.%, влияние флакса на объёмную плотность Ni-Mn-Si преципитатов при облучении отсутствует. Плотность радиационных дефектов в образцах ОМ и МШ также не зависит от скорости набора повреждающей дозы и определяются только накопленным флюенсом быстрых нейтронов. При ускоренном облучении для МШ с содержанием никеля (1,35-1,9) мас.% наблюдаются некоторые различия в объемной доле радиационно-индуцированных преципитатов, в основном, за счёт их меньшего размера.

9. При оценке изменения предела текучести с использованием данных АЗТ и ПЭМ-исследований для ускоренно облученных образцов МШ (с содержанием Ni>1,4 мас.%) показано, что вклад радиационного упрочнения в эффект флакса незначителен (по сравнению с вкладом от сегрегационных процессов).

10. Сопоставимые исследования ОС МШ КР ВВЭР-1000 (с содержанием Ni ~1,9 мас.%), первично – и повторно облученных (после восстановительного отжига по режиму 565°С/100ч.) показали, что степень деградации их структуры идентична, а, следовательно, темп повторного радиационного охрупчивания МШ не выше темпа радиационного охрупчивания при первичном облучении.

Основные публикации по теме диссертации:

Публикации в изданиях, рекомендованных ВАК РФ:

1. Kuleshova E.A., Gurovich B.A, Lavrukhina Z.V., Maltsev D.A., Fedotova S.V, Frolov A.S., **Zhuchkov G.M.** Study of the flux effect nature for VVER-1000 RPV welds with high nickel content// Journal of Nuclear Materials. – 2017, Vol. 483,–P.1-12.

2. Kuleshova E.A., Gurovich B.A., Bukina Z.V., Frolov A.S., Maltsev D.A., Krikun E.V., Zhurko D.A, **Zhuchkov G.M.** Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C// Journal of Nuclear Materials. – 2017, Vol. 490, – P. 247-259.

3. Kuleshova E.A., Gurovich B.A., Maltsev D.A., Frolov A.S., Bukina Z.V., Fedotova S.V., Saltykov M.A., Krikun E.V., Erak D.Y., Zhurko D.A., Safonov D.V., **Zhuchkov G.M.** Phase and structural transformations in VVER-440 RPV base metal after long-term operation and recovery annealing// Journal of Nuclear Materials. – 2018, Vol. 501, – P. 261-274.

4. Fedotova S.V., Kuleshova E.A., Gurovich B.A., Frolov A.S., Maltsev D.A., **Zhuchkov G.M.**, Fedotov I.V. APT-studies of phase formation features in VVER-440 RPV weld and base metal in irradiation-annealing cycles// Journal of Nuclear Materials. – 2018, Vol. 511, – P. 30-42.

5. Кулешова Е.А., Фролов А.С., **Жучков Г.М.**, Федотов И.В. Радиационноиндуцированное фазообразование в сталях корпусов ядерных реакторов типа ВВЭР с содержанием никеля ~0.3-1.3 мас.%// Физика металлов и металловедение. – 2019, –Т. 120, №5, – С. 505-511.

6. Kuleshova E.A., Fedotova S.V., **Zhuchkov G.M.**, Erak A.D. Degradation of RPV steel structure after 45 years of operation in the VVER-440 reactor// Journal of Nuclear Materials. – 2020, Vol. 540, 152362.

7. Kuleshova E.A., Gurovich B.A., Fedotova S.V., **Zhuchkov G.M.**, Frolov A.S., Maltsev D.A. Comparison of the high Ni VVER-1000 weld microstructure under the primary irradiation and re-irradiation// Journal of Nuclear Materials. – 2020, Vol. 540, 152384.

8. Kuleshova E.A., Zhuchkov G.M., Fedotova S.V., Maltsev D.A., Frolov A.S., Fedotov I.V. Precipitation kinetics of radiation-induced Ni-Mn-Si phases in VVER-1000 reactor pressure vessel steels under the low and high flux irradiation// Journal of Nuclear Materials. – 2021, Vol. 553, 153091.

Материалы конференций:

1. Кулешова Е.А., Гурович Б.А., Букина З.В. Мальцев Д.А., Федотова С.В., Фролов А.С., Жучков Г.М. Оценка вклада упрочняющего механизма в эффект

флакса при ускоренном облучении сталей корпусов реакторов ВВЭР-1000 методами атомно-зондовой томографии и трансмиссионной электронной микроскопии// тезисы доклада в сборнике аннотаций «13-ая Международная школа-конференция для молодых учёных и специалистов «Новые материалы – Жизненный цикл материалов в процессе эксплуатации ЯЭУ» - 2016 - с. 59.

2. Букина З.В., Гурович Б.А., **Жучков Г.М.**, Кулешова Е.А., Мальцев Д.А., Федотова С.В., Фролов А.С. Вклад упрочняющего механизма в эффект флакса сталей корпусов реакторов ВВЭР-1000// тезисы доклада в сборнике аннотаций «14-я Курчатовская междисциплинарная молодежная научная школа» - 2016-с. 21.

3. Жучков Г.М., Кулешова Е.А., Мальцев Д.А., Сафонов Д.В., Фролов А.С. Фазовый состав стали корпуса реактора ВВЭР-440 в стали после длительной эксплуатации// тезисы доклада в сборнике аннотаций «14-я Курчатовская междисциплинарная молодежная научная школа» - 2016 – с. 47.

4. Кулешова Е.А., Гурович Б.А., Мальцев Д.А., Фролов А.С., Букина З.В., Салтыков М.А., **Жучков Г.М.** Структурные исследования материалов ОМ КР ВВЭР-440 после длительной эксплуатации и восстановительных отжигов// тезисы доклада в сборнике аннотаций «10-я международная научно-техническая конференция «Обеспечение безопасности АЭС с ВВЭР» - 2017 – с. 74.

5. Кулешова Е.А., Фролов А.С., Мальцев Д.А., Букина З.В., Крикун Е.В., **Жучков Г.М.** Влияние температуры облучения на механизмы радиационного охрупчивания// тезисы доклада в сборнике аннотаций «10-я международная научно-техническая конференция «Обеспечение безопасности АЭС с ВВЭР» - 2017 – с. 77.

6. Кулешова Е.А., Гурович Б.А., Букина З.В., Мальцев Д.А., Федотова С.В., Фролов А.С., **Жучков Г.М.** Вклад упрочняющего и неупрочняющего механизмов в эффект флакса сталей корпусов реакторов ВВЭР-1000// тезисы доклада в сборнике «16-я конференция молодых учёных и специалистов «Новые материалы и технологии» - 2017 – с. 13.

7. Федотова С.В., Кулешова Е.А., Гурович Б.А., Мальцев Д.А., Фролов А.С., **Жучков Г.М.** Возврат структурного состояния корпусов реакторов ВВЭР-440 путём проведения повторного восстановительного отжига для продления их срока службы до 60 лет// тезисы доклада в сборнике «15-я Международная научно-практическая конференция по атомной энергетике» - 2019 – с. 34-35.

8. Кулешова Е.А., Ерак А.Д., **Жучков Г.М.**, Федотова С.В. Деградация структуры корпусных сталей после 45 лет эксплуатации ВВЭР-440// тезисы доклада в сборнике «16-я Курчатовская междисциплинарная молодежная научная школа» - 2019 – с.11.