dreft

СПИЦЫНА Екатерина Евгеньевна

ИДЕНТИФИКАЦИЯ ХОЛОДОПРОИЗВОДИТЕЛЬНОСТИ И ТЕПЛООТДАЧИ НЬЮТОНОВСКОГО ТЕПЛОНОСИТЕЛЯ В БЛОКЕ ТЕРМОЭЛЕКТРИЧЕСКОГО ОХЛАЖДЕНИЯ

Специальность 01.04.14 Теплофизика и теоретическая теплотехника

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в ФГБОУ ВО «Воронежский государственный технический университет»

Научный руководитель

Кретинин Александр Валентинович,

доктор технических наук, профессор

Официальные оппоненты:

Шитов Виктор Васильевич,

доктор технических наук, профессор,

Международный институт компьютерных технологий, кафедра атомных электрических станций, профессор

Ерин Олег Леонидович,

кандидат технических наук, ВУНЦ ВВС "ВВА", 22 отдел научно-исследовательский 2 управления научно-исследовательского центра (проблем применения, обеспечения и управления авиацией Военно-воздушных сил), старший научный сотрудник

Ведущая организация ФГБОУ ВО "Курский государственный университет", г.Курск

Защита состоится «28» мая 2020 г. в 14^{00} часов на заседании диссертационного совета Д 212.037.05, созданного на базе ФГБОУ ВО «Воронежский государственный технический университет», по адресу: 394026, Воронеж, Московский проспект, 14.

С диссертацией можно ознакомиться в научно-технической библиотеке Φ ГБОУ ВО «Воронежский государственный технический университет» и на сайте www.https://cchgeu.ru/.

Автореферат разослан « 8 » апреля 2020 г.

Ученый секретарь диссертационного совета

Дахин Сергей Викторович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы исследования.</u> Необходимость охлаждения компактных радиоэлектронных систем обусловливает перспективность применения термоэлектрических охладителей (ТЭО), о чем свидетельствуют полномасштабные научно-исследовательские и опытно-конструкторские работы в зарубежных и отечественных специализированных компаниях.

Теоретические принципы термоэлектрического охлаждения изложены в работах А.Ф. Иоффе, Л.С. Стильбанса, А.И. Бурштейна, Б.И. Бока и др., экспериментально подтверждены в многочисленных публикациях, однако практические аспексталкиваются сложностями проектировании co при предметноориентированных систем. И, в частности, остается открытым вопрос о задании структуры граничных условий для теплообмена на "смоченных" поверхностях ТЭО. В настоящее время из этого положения выходят принятием, по-видимому, мало обоснованного предположения об аналогии передачи теплоты конвективным механизмом без учета термоэлектрических процессов в теплопоглощающем материале и наличия начальных гидродинамических и тепловых начальных участков в каналах ТЭО, на которых интенсивность теплообмена резко отличается от участков стабилизации.

В связи с этим учет всех механизмов передачи теплоты в ТЭО позволит, вопервых, уточнить локальные коэффициенты теплоотдачи на "смоченных" поверхностях, во-вторых, более точно определять площадь теплопередачи и обосновать конструктивные характеристики систем охлаждения на базе ТЭО и, в-третьих, назначать режимные параметры функционирования ТЭО для обеспечения надежности охлаждения и минимизации энергопотребления.

Диссертационные исследования выполнены в соответствии с научным направлением ФГБОУ ВГТУ «Наукоемкие технологии в машиностроении, авиастроении и ракетно-космической технике» и в рамках Федеральной целевой программы Министерства образования и науки Российской Федерации (Соглашение №14.577.21.0202, уникальный идентификатор RFMEFI57715X0202).

<u>Целью диссертационной работы</u> является идентификация холодопроизводительности и теплоотдачи от ньютоновского теплоносителя на теплопоглощающей стенке термоэлектрического элемента охлаждения.

Для достижения указанной цели в работе были сформулированы <u>следующие</u> задачи:

- 1. Разработка пилотной установки локальной термостабилизации и проведение экспериментов по определению интегральных параметров теплоотдачи на теплопоглощающей и теплоотдающей поверхностях ТЭО жидкостно-воздушной схемы с последующим анализом факторов, оказывающих влияние на холодопроизводительность и теплоотдачу, а также проверка чувствительности полученных результатов на базе ANSYS DesignXplorer.
- 2. Синтез математической модели гидродинамики неизотермического течения жидкого теплоносителя в каналах блока ТЭО с использованием платформы ANSYS CFX, определение длин начальных гидродинамических участков, оценка неравномерности подачи теплоносителя в пакете проточных каналов, перепадов давления и полей температур.

- 3. Синтез математической модели ТЭО в модуле ANSYS Thermal Electric и проведение на ее основе вычислительного эксперимента для определения холодильной мощности и холодильного коэффициента с построением регрессионного соотношения в зависимости от температур «холодной» и «горячей» стенок и затрачиваемой электрической мощности.
- 4. Разработка методики определения холодопроизводительности и коэффициента теплоотдачи от жидкости к теплопоглощающей стенке ТЭО.

Научная специальность, которой соответствует диссертация п. 5 «Экспериментальные и теоретические исследования однофазной, свободной и вынужденной конвекции в широком диапазоне свойств теплоносителей, режимных и геометрических параметров теплопередающих поверхностей» и п. 9 «Разработка научных основ и создание методов интенсификации процессов тепло- и массообмена и тепловой защиты» паспорта специальности 01.04.14 «Теплофизика и теоретическая теплотехника».

Научная новизна:

- 1. Разработанная компьютерная модель динамики жидкости (CFD модель), отличающаяся учетом гидродинамической обстановки в каналах ТЭО и длин участков гидродинамической и тепловой стабилизации, а также расходной неравномерности распределения теплоносителя по отдельным каналам проточной части.
- 2. Экспериментально обоснована адекватность факторных метамоделей расчета величин холодопроизводительности и среднего коэффициента теплоотдачи на "смоченной" поверхности ТЭО и подтверждено влияние термоэлектрической составляющей на величину коэффициента теплоотдачи.
- 3. На основе компьютерной модели и экспериментальных исследований предложено новое критериальное соотношение для коэффициента теплоотдачи при расчете ТЭО типовых конструкций.

Положения, выносимые на защиту.

- 1. Результаты по определению длин участков гидродинамической и тепловой стабилизации и расходной неравномерности распределения теплоносителя по отдельным каналам ТЭО.
- 2. Факторные метамодели для расчета величин холодопроизводительности и среднего коэффициента на "смоченной" поверхности ТЭО.
- 3. Критериальное соотношение для коэффициента теплоотдачи на теплопоглощающей стенке ТЭО.

Теоретическая и практическая значимость и реализация.

Полученные результаты использовались при осуществлении научных и экспериментальных работ по теме «Разработка элементов гибридной системы локальной термостабилизации электронных модулей на основе микроканальных теплообменников и термоэлектрических преобразователей» (Уникальный идентификатор ПНИЭР **RFMEFI57715X0202**), выполняемых ВГТУ совместно с Индустриальным партнером АО "РИФ" в целях реализации федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2014 - 2020 годы», утвержденными поста-

новлением Правительства Российской Федерации от 28 ноября 2013 г. № 1096, в следующих работах: разработка макета гибридной системы локальной термостабилизации; изготовление макета гибридной системы локальной термостабилизации; проведение исследовательских испытаний макета гибридной системы локальной термостабилизации, обработка результатов испытаний и их сравнение с результатами теоретических исследований; верификация математических моделей по результатам экспериментальных исследований; оптимизация макета гибридной системы локальной термостабилизации; обобщение и оценка результатов исследований; разработка проекта технического задания на ОКР.

Достоверность результатов диссертации обусловлена: применением апробированных на тестовых задачах математических моделей фундаментальных законов тепломассопереноса из платформы ANSYS, а также классических и современных численных методов решения; использованием поверенных средств измерений, компьютерных систем регистрации и анализа экспериментальных результатов, методов планирования и проведения эксперимента; верификацией теоретических результатов с экспериментальными данными и результатами исследований других авторов.

Методология и методы диссертационного исследования.

Основные результаты диссертационной работы получены в результате проведения физического эксперимента с использованием пилотной установки локальной термостабилизации. Результаты по определению длин участков гидродинамической и тепловой стабилизации и расходной неравномерности распределения теплоносителя по отдельным каналам ТЭО получены с использованием методов вычислительной динамики жидкости в программном комплексе ANSYS CFX. Получение критериального уравнения теплообмена на теплопоглощающей стенке осуществлено методами нелинейного программирования с использованием алгоритма метода непрямой оптимизации на основе самоорганизации IOSO.

Апробация работы. Основные результаты работы докладывались и обсуждались на научно-технических семинарах и конференциях: международной научно-практической конференции "АННИ 21 века" (Воронеж, 2014), XIII международном семинаре "Физико-математическое моделирование систем" (Воронеж, 2015), 15th International Conference "Research and Development in Mechanical Industry" (RaDMI-2015), Второй Российско-Тихоокеанской конференции по компьютерным технологиям и приложениям (RPC 2017) (Владивосток, 2017), международной научно-практической конференции "Альтернативная и интеллектуальная энергетика" (Воронеж, 2018), международной научно-технической конференции "Актуальные проблемы прикладной математики, информатики и механики" (Воронеж, 2018).

<u>Публикации.</u> По теме диссертации опубликовано 11 научных работ, в том числе 6 – в изданиях, рекомендованных ВАК РФ. В работах, опубликованных в соавторстве, лично соискателю принадлежат: проведение моделирования процессов гидродинамики и теплообмена; получение зависимости коэффициента теплоотда-

чи; разработка методик проведения исследований, обработка экспериментальных исследований и расчета.

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, четырех глав, основных результатов работы, списка использованной литературы из 114 наименований. Работа изложена на 138 страницах, содержит 92 рисунка, 19 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность выбранной темы диссертации, сформулированы цель и задачи исследования.

<u>В первой главе</u> описывается макет системы локальной термостабилизации электронной аппаратуры и входящее в его состав устройство термоэлектрического охлаждения теплоносителя жидкостно-воздушной схемы (рис. 1). Описываются применяемые термоэлектрические модули охлаждения (ТЭМО). Приводится конструкция термоэлектрического блока охлаждения (ТЭБО) с описанием гидравлического тракта. Проводится анализ литературных источников по моделированию гидродинамики и конвективного теплообмена при течении теплоносителя в каналах ТЭБО в среде ANSYS CFX.

На рис. 2 представлена модель жидкостных каналов ТЭБО, состоящая из 4 трубок, в каждой из которых 4 миниканала. Поперечное сечение отдельного канала показано на рис. 3. Кроме прямоугольных каналов могут выполняться треугольные, трапециидальные каналы, как правило, с "зубчатой" внутренней стенкой. Подвод и распределение теплоносителя по трубкам и миниканалам осуществляется из подводящих коллекторов различной формы.

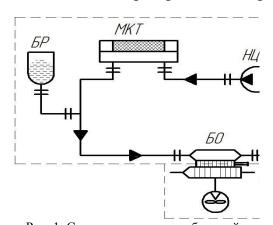


Рис. 1. Структурная схема гибридной системы локальной термостабилизации AT — воздушный теплообменный аппарат (кулер); БО — блок охлаждения на основе ТЭМО (жидкостно-воздушный); БР — расширительный бак; МКТ — микроканальный теплообменник; НЦ — насос

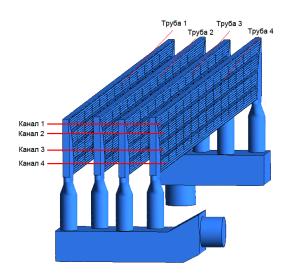


Рис. 2. Модель ТЭБО с охлаждаемым теплоносителем

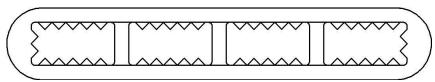


Рис. 3. Поперечное сечение отдельного канала

Особенности конструктивного оформления каналов для движения жидкого теплоносителя и проточной части радиаторов воздушного охлаждения приводят к тому, что нельзя с уверенностью подобрать набор критериальных зависимостей теплообмена с целью их использования в граничных соотношениях, полученных на основе теории подобия. Во-первых, значительная часть жидкостных каналов работает в области нестабилизированного течения жидкости как на входе в каналы, так и на выходе. Во-вторых, развитая (зубчатая) поверхность теплообмена со стороны жидкости оставляет открытым вопрос о превалирующем механизме (молярном либо молекулярном) переноса тепла от теплоносителя в стенку ТЭМО. В-третьих, перенос тепла осуществляется в термоэлектрический материал при различных значениях подведенной к ТЭМО электрической энергии. И в этом случае тепло передается от холодного к горячему спаю, т.е. задействуется термоэлектрический механизм теплопереноса при существенном влиянии тепловых процессов, проходящих в соответствии с законами Фурье и Джоуля. В этом случае целесообразно исследовать влияние термоэлектрической природы поглощения тепла на холодном спае на интенсивность теплообмена между теплоносителем и стенками ТЭМО. Вероятно, для рассматриваемых систем метод моделирования явлений теплообмена с помощью критериев подобия является недостаточно надежным, т.к. общепринятые критериальные соотношения (обычно вида Nu=f(Re,Pr) получены в экспериментах с материалами без влияния термоэлектрических эффектов и должны быть идентифицированы не только с учетом наличия участков нестабилизированного течения теплоносителя на переходных режимах, но и с учетом влияния термоэлектрических эффектов на интенсивность теплопереноса.

<u>Во второй главе</u> приводятся результаты экспериментальных исследований ТЭМО и планирования эксперимента по определению зависимости коэффициента теплоотдачи на теплопоглощающей поверхности ТЭО.

Исследовательские испытания экспериментального образца ТЭМО проводились в составе изготовленного макета гибридной системы локальной термостабилизации (рис. 4, 5). В планируемом эксперименте факторами (варьируемыми параметрами) принимаются следующие величины:

dT - разность температур жидкости на входе в ТЭМО T_{fix} и окружающей среды T_{vix} , т.е. $dT = T_{fix} - T_{vix}$;

 N_{tmo} - потребляемая электрическая мощность ТЭМО, т.е. $N_{tmo} = U_{tmo} \cdot I_{tmo}$, где U_{tmo} - это напряжение, подаваемое на ТЭМО, а I_{tmo} - сила тока;

 N_{vent} - потребляемая электрическая мощность вентиляторов, т.е. $N_{vent} = U_{vent} \cdot I_{vent}$, где U_{vent} и I_{vent} соответственно напряжение и сила тока, подаваемые на вентиляторы; \dot{V}_f - расход теплоносителя на входе в ТЭМО (м³/час).

Рис. 4. Макет гибридной системы локальной термостабилизации

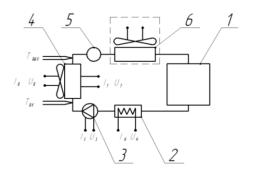


Рис. 5. Схема испытаний 1 — емкость с жидким теплоносителем; 2 — электронагреватель; 3 — электронасос; 4 — ТЭБО; 5 — расходомер; 6 — радиатор с вентилятором и регулятором оборотов; 7 — термопары

В экспериментальной установке предусмотрена термопара для определения температуры горячей поверхности ТЭМО. По разнице температур теплоносителя на входе и выходе из установки определялась холодильная мощность ϱ_{κ} ТЭБО, которая являлась выходным параметром (критерием). Физический эксперимент планировался по алгоритму Optimal Space-Filling Design и для 4 факторов включал 25 точек. В табл. 1 представлена матрица спектра плана эксперимента с измеренными и вычисленными значениями факторов и критерия. Показано, что при реализации в физическом эксперименте значений расходов теплоносителя согласно плану эксперимента потери давления настолько малы, что с помощью используемых средств измерения зафиксированы быть не могут. Неопределенность определения холодопроизводительности блока обусловливается расширенной неопределения расхода. Минимальная неопределенность экспериментального нахождения холодопроизводительности в эксперименте составила 6.82 %, поэтому в дальнейшем определены требования к точности регрессионных зависимостей в 6%.

Результаты физического эксперимента

Таблица 1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Uтмо	Ітмо	Uvent	lvent	Tfvx	Tfvyx	Twx	Twyx	dT	Rashod	Treb	Eps	Ntmo	Nvent	Qx
1	21.9	30.1	17.8	9.1	15	12.3	29.06	35.24	-14.06	0.069	46.1	0.328129	659.19		216.2993
2	22.6	31.3	19.8	10.5	17.57	11.31	29.3	34.57	-11.73	0.028	45.72	0.287524	707.38	207.9	203.3888
3	14.4	20	18.6	9.8	18.82	15.99	29.35	32.53	-10.53	0.064	38.21	0.728214	288	182.28	209.7257
4	15.8	22.1	23	13	21.73	16.48	29.94	33.04	-8.21	0.044	39.33	0.765139	349.18	299	267.1711
5	13.1	18	14.6	6.9	23.14	18.95	29.09	33.18	-5.95	0.047	38.55	0.964669	235.8	100.74	227.4689
6	16.5	22.8	16.2	8	24.97	15.44	29.3	33.57	-4.33	0.019	41.1	0.556265	376.2	129.6	209.267
7	11.7	16.4	20.2	11	26.89	19.11	28.87	31.51	-1.98	0.022	36.2	1.029022	191.88	222.2	197.4487
8	19.2	27.5	22.6	12.9	28.61	24	28.84	35.24	-0.23	0.081	44.71	0.814125	528	291.54	429.858
9	26.7	36.5	19	10.1	30.63	23.74	29.52	39.7	1.109999	0.056	56.17	0.455518	974.55	191.9	443.925
10	21.2	28.9	14.2	6.6	32	25.47	30.8	40.2	1.200001	0.053	52.7	0.649303	612.68	93.71999	397.8152
11	23.3	32.7	23.4	12.6	33.54	23.97	30.18	38.51	3.360001	0.042	51.09	0.60638	761.91	294.84	462.0067
12	24.6	33.4	16.6	8.3	35.6	21.5	30.91	40.75	4.689999	0.025	55.3	0.493194	821.6401	137.78	405.2284
13	11.02	16.2	18.2	9.6	37.6	33.2	30.37	35.46	7.229998	0.078	41.4	2.201288	178.524	174.72	392.9828
14	20.54	28.7	17	8.5	38.9	32.8	30.78	40.5	8.120001	0.084	53.56	0.995054	589.498	144.5	586.5825
15	10.34	15.6	22.2	12.4	40.86	33.82	30.48	34.81	10.38	0.05	40.31	2.496142	161.304	275.28	402.6377
16	18.5	26.1	21.8	12.2	42.7	21.07	31.26	37.42	11.44	0.016	46.78	0.822336	482.85	265.96	397.0651
17	12.41	17.2	17.4	8.8	44.68	31.92	30.55	36.41	14.13	0.03	44.08	2.050328	213.452	153.12	437.6467
18	17.8	26.1	23.5	12.5	46.7	38.24	31.79	39.1	14.91	0.067	50.29	1.391936	464.58	293.75	646.6657
19	25.9	36.1	21.1	11.6	48.22	39.03	32.32	43.23	15.9	0.072	61	0.806925	934.9899	244.76	754.4667
20	13.74	20.6	15	7.1	50.08	40.8	29.92	38.03	20.16	0.058	48.66	2.166419	283.044	106.5	613.1919
21	24	33.2	15.4	7.3	51.7	41.16	30.89	44.28	20.81	0.061	62.96	0.918849	796.8	112.42	732.1385
22	25.3	35.5	20.6	11.2	53.58	34.83	30.78	41.97	22.8	0.036	59.51	0.856696	898.15	230.72	769.4415
23	19.9	28.2	15.8	7.6	55.88	37.61	30.06	41.04	25.82	0.033	56.43	1.223238	561.18	120.08	686.4567
24	17.1	25.7	19.4	10.2	57.04	47.25	30.53	39.7	26.51	0.075	53.37	1.897874	439.47	197.88	834.0588
25	15.1	23.3	21.4	11.7	58.91	41.66	30.58	38.14	28.33	0.039	49.31	2.173745	351.83	250.38	764.7886

Полученные в ходе проведения испытаний результаты в полной мере подтверждают работоспособность ТЭМО.

<u>В третьей главе</u> осуществляется математическое моделирование термоэлектрического анализа ТЭМО, гидродинамики жидкостных каналов и теплообмена в среде ANSYS, и проводятся исследования по получению идентифицированных теплообменных соотношений на «горячей» и «холодной» поверхностях ТЭМО для конкретной конструкции изделия.

На рис. 6-7 приведены особенности моделируемой конструкции термоэлектрического блока охлаждения гибридной системы локальной термостабилизации.

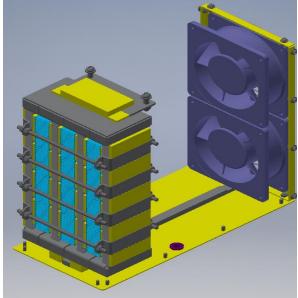


Рис. 6. Модель блока охлаждения

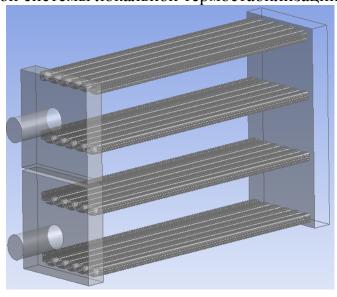


Рис. 7. Общий вид проточной части жидкостного тракта

Теплообмен с жидкостью осуществляется через стенки каналов тракта охлаждения, состоящего из 4 секций по 11 каналов в каждой. Подвод и отвод теплоносителя осуществляется с одной стороны теплообменника, поэтому в 2 секциях жидкость течет в одном направлении, а в 2 других - в обратном. Из 11 каналов в секции 9 средних имеют треугольное поперечное сечение площадью 23,218 мм², а два периферийных канала выполнены трапециидальной формы с площадью 24,906 мм². Длина секции 200 мм. Стенки каналов, контактирующие с внешними границами секции, имеют "зубчатую" форму.

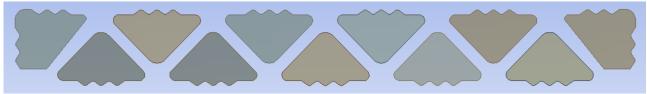


Рис. 8. Компоновка миниканалов жидкостного тракта

Геометрия проточной части образована 1124 поверхностями с 3152 гранями. Для оптимального использования ресурсов компьютера полученная модель про-

точной части была разделена на 47 отдельных моделей (44 канала, входной, промежуточный и выходной коллектор).

На графиках расчетного коэффициента теплоотдачи в каналах можно заметить выделяющиеся зоны нестабилизированного течения в жидкостных каналах (рис. 9). Особенно протяженными данные зоны являются на входе в каналы и составляют до четверти от общей длины каналов (рис. 10).

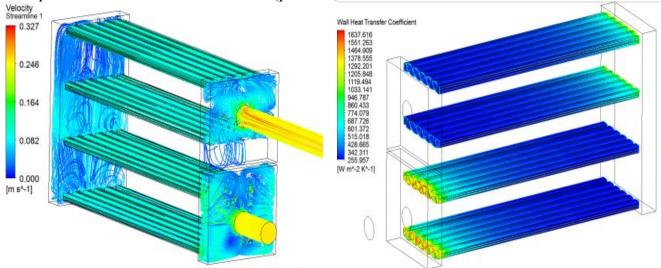


Рис. 9. Линии тока движения жидкости

Рис. 10. Распределение значения коэффициента теплоотдачи по поверхности теплообмена

Величина расходной неравномерности в отдельных каналах по результатам моделирования в ANSYS может достигать десяти процентов (табл. 2).

Расходная неравномерность по каналам тракта охлаждения при суммарном расходе через модуль $0.05~{\rm Kr/c}$ Таблица 2

Расход через канал, г/с									
Номер канала	Секция 1	Секция 2	Секция 3	Секция 4					
1	2,13065	2,44662	2,44924	2,58665					
2	2,1868	2,14863	2,0964	2,39107					
3	2,2488	2,343	2,22213	2,31053					
4	2,30609	2,23683	2,09698	2,32313					
5	2,29444	2,3638	2,1599	2,23677					
6	2,38714	2,32106	2,0902	2,26684					
7	2,26197	2,35871	2,14441	2,22635					
8	2,23912	2,23831	2,08693	2,30086					
9	2,20614	2,3373	2,21509	2,28311					
10	2,21197	2,15018	2,10824	2,36301					
11	2,16728	2,46368	2,48143	2,55219					

Проведена верификация математической модели аэродинамики со стороны го-

рячей поверхности ТЭМО, реализованной в среде ANSYS CFX, по величине температуры горячей стенки, максимальная погрешность определения температуры горячей поверхности для точки плана № 2 составляет около 2.5 %.

На рис. 11 приведена сеточная модель одного из 24 модулей в составе блока охлаждения. В каждом ТЭМО 35 веток, соединенных друг с другом медными подложками. Также в модели учитываются и керамические подложки, расположенные снизу и сверху модуля. Для создания сеточной модели использовались конечные элементы SOLID226 (Ansys Meshing).

Был выбран следующий вариант граничных условий:

- величина силы тока на одном контакте;
- нулевой потенциал на противоположном контакте;
- температуры холодной и горячей стенок.

Граничные условия силы тока, температуры горячей и холодной поверхностей задавались изменяемыми параметрами. Факторный анализ проводился на базе модуля ANSYS DesignXplorer, предназначенного для параметрических исследований и оптимизации. Также был задействован инструмент Response Surface модуля DesignXplorer для формирования моделей типа поверхностей отклика.

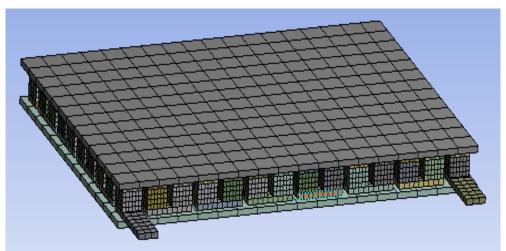


Рис. 11. Сеточная модель ТЭМО

Планирование вычислительного эксперимента также осуществлялось в модуле ANSYS DesignXplorer по алгоритму Optimal Space-Filling Design, при этом исследуемый гиперкуб факторного пространства имеет следующую размерность: сила тока 3,5-10 А, температура горячей стенки 35-65°С, температура холодной стенки назначалась температурный охладитель, чтобы разность температур холодной и горячей стенок составляла от 10 до 40 °С. Результатом расчета являлось значение теплового потока с холодной стороны

Моделирование термоэлектрических явлений в модуле ТЭМО реализовано в пакете ANSYS Thermal Electric. При разработке математической модели гидродинамики теплоносителя в модуле ANSYS CFX применялась полуэмпирическая «k - є» модель турбулентности. Расчетная методика разработана для моделей каналов системы термостабилизации с нагреваемым и с охлаждаемым теплоносителем. В диссертации приведены результаты моделирования и верификации термоэлектри-

ческих явлений в ТЭМО, в частности, приведена идентифицированная зависимость $Q_x(I,T_x,T_g)$, с помощью которой подобраны во всех точках плана значения температур T_x , при которых точность определения холодильной мощности обеспечивается не ниже 0.05~%.

Сформированная модель зависимости холодильной мощности носит вспомогательный характер для достижения основной цели работы и необходима для корректного вычисления коэффициента теплоотдачи от теплоносителя в холодную стенку ТЭМО (термоэлектрический модуль охлаждения) при сопряженном анализе.

В дальнейшем все три модели - гидродинамики жидкостного, воздушного охлаждения и термоэлектрического анализа - были объединены в один расчетный блок для сопряженного анализа. Верификация проводилась также по величине $Q_{\rm x}$. К сожалению, погрешность определения данного критерия оказалась меньше 6% только в 6 точках плана эксперимента из 25. Данные результаты обусловили дальнейшие усилия по поиску зависимости для величин холодопроизводительности и среднего коэффициента теплоотдачи жидкостного тракта ТЭБО (термоэлектрический блок охлаждения) при предпочтительном способе получения такой зависимости путем обработки экспериментальных данных.

<u>В четвертой главе</u> осуществлялась обработка результатов физического эксперимента и получение факторных экспериментальных зависимостей среднего коэффициента теплоотдачи от теплоносителя в теплопоглощающую поверхность БОТЭМО (блок охлаждения термоэлектрического модуля охлаждения).

С использованием полученной факторной модели ТЭМО и измеренных значений температур горячей поверхности ТЭМО для каждой точки плана подбирались средние температуры холодной поверхности ТЭБО, при которых обеспечивалось равенство значений холодильной мощности, рассчитанных с использованием факторной модели ТЭМО и полученных в результате физического эксперимента. Среднее значение коэффициента теплоотдачи от теплоносителя в теплопоглощающую стенку ТЭМО вычислялось по формуле

$$\alpha_{\mathsf{x}} = \frac{Q_{\mathsf{x}}}{\left(T_f - T_{\mathsf{x}}\right) \cdot S_{\mathsf{n}}} \tag{1}$$

где T_f - средняя температура теплоносителя в жидкостных каналах ТЭБО,

 S_{II} - площадь поверхности жидкостных каналов, участвующих в теплообмене.

При задании расхода жидкого теплоносителя ставилось ограничение на максимальное число Рейнольдса в охлаждающих каналах Re<200. С помощью методов нелинейного программирования была идентифицирована критериальная зависимость вида Nu=f(Re,Pr), которая в наилучшем варианте в смысле точности расчета (минимума суммарного квадратичного отклонения) имеет вид $\text{Nu}=10\cdot\text{Re}^{0.2}/\text{Pr}_{\text{ст}}$. Для последней формулы максимальная погрешность получилась в точке № 14 плана и составила 21 %, что несколько выше экспериментальной неопределенности нахождения данной величины. Однако во всех остальных точках плана эксперимента погрешность использования формулы $\text{Nu}=10\cdot\text{Re}^{0.2}/\text{Pr}_{\text{ст}}$ меньше (чаще всего, значи-

тельно меньше) экспериментальной неопределенности нахождения значения коэффициента теплоотдачи на теплопоглощающей стенке.

Точность аппроксимации существенно повышается, если в число критериев включить безразмерный критерий, характеризующий интенсивность термоэлектрического эффекта. Например, для формулы $Nu{=}6.134\cdot Re^{0.165}\cdot Pr_f^{0.1384}/Pr_{cr}^{-1.333}\cdot Kr^{0.5345}$

$$Nu=6.134 \cdot Re^{0.165} \cdot Pr_{f}^{0.1384} / Pr_{ct}^{1.333} \cdot Kr^{0.5345}$$
(2)

где $\mathrm{Kr} = I \frac{\alpha}{F} \frac{d_{9}}{\lambda_{+}} \frac{T_{x}}{T_{-} - T}$ (α - коэффициент Зеебека, F - смоченная поверхность тепло-

обмена, d_{\Im} - средний эквивалентный диаметр миниканалов, λ_f -коэффициент теплопроводности охладителя при температуре жидкости) максимальная погрешность получилась в точке № 17 плана и составила 14.4 %.

Аппроксимационная зависимость для нахождения коэффициента теплоотдачи на теплопоглощающей стенке имеет вид

$$\begin{split} &\alpha_{sc} = -25.981755 + 73.2158396 \cdot T_x - 22.644839 \cdot T_f + 2.61022986 \cdot T_x^2 + \\ &+ 1.28292285 \cdot T_f^2 - 4.1723389 \cdot T_x \cdot T_f + 74.2391083 \cdot I - 25.621 \cdot T_g - \\ &- 0.14647315 \cdot I^2 + 0.104869597 \cdot T_g^2 - 2.34 \cdot I \cdot T_f + 1.76037 \cdot I \cdot T_x - \\ &- 0.49132 \cdot I \cdot T_g + 0.56715222 \cdot T_f \cdot T_g - 0.96986872 \cdot T_x \cdot T_g + \\ &+ 0.015616455 \cdot I \cdot T_f \cdot T_x + 0.017657 \cdot I \cdot T_f \cdot T_g - 0.00252416 \cdot I \cdot T_x \cdot T_g + \\ &+ 0.005895081 \cdot T_x \cdot T_f \cdot T_g - 0.000297 \cdot I \cdot T_f \cdot T_x \cdot T_g \end{split}$$

Здесь I - сила тока на всю установку, A, $T_f \cdot T_x \cdot T_g$ - средние температуры жидкости, холодной и горячей сторон ТЭМО на данном режиме.

Зависимость (3) может использоваться для поиска оптимальных режимов функционирования БОТЭМО. Точность вычисления коэффициента теплоотдачи в каждой точке плана обеспечивается не ниже 1.5 %. При построении функции отклика и проведения оптимизации по функции отклика в качестве целевой функции или ограничивающего параметра может использоваться суммарная потребляемая мощность системы локальной термостабилизации $N_{sum} = N_{tmo} + N_{vent} + N_{pump}$, которая складывается из потребляемых мощностей ТЭМО, вентиляторов и помпы. Разработанная методика может быть применена для поиска оптимального режима функционирования системы при произвольном значении холодопроизводительности и температур теплоносителя и окружающего воздуха.

ЗАКЛЮЧЕНИЕ

- 1. Разработан и изготовлен макет гибридной системы локальной термостабилизации. Проведено планирование многофакторного эксперимента и проведены измерения согласно разработанному плану для определения холодопроизводительности БОТЭМО. Проведена оценка неопределенностей экспериментального определения холодопроизводительности модуля охлаждения.
- 2. Проведен синтез и верификация математических моделей в среде ANSYS: гидродинамики и теплоотдачи в жидкостных каналах и внешнего воздушного ох-

лаждения БО в ANSYS CFX и термоэлектрического анализа в среде ANSYS Thermal Electric. Сформирован расчетный блок на платформе ANSYS Workbench, позволяющий проводить сопряженный расчет функционирования БОТЭМО в составе установки локальной термостабилизации.

- 3. По результатам численного решения осредненных по Рейнольдсу дифференциальных уравнений в частных производных неразрывности, уравнений Навье-Стокса и энергии осуществлена детерминация таких эпистемических неопределенностей рабочего процесса ТЭБО, как неопределенность длин начальных участков гидродинамической и тепловой стабилизации в жидкостных каналах ТЭБО и параметры неравномерности распределения теплоносителя по отдельным каналам жидкостного тракта. Идентифицирована математическая модель термоэлектрического анализа при определении температур холодной стенки для сопряженного анализа, при которых погрешность расчета $Q_{\rm x}$ в сравнении с экспериментальными значениями не превышает 0,05 %. Сформирована зависимость холодильной мощности от силы тока и температур холодной и горячей поверхностей в виде поверхностей отклика.
- 4. Для расчета коэффициента конвективной теплоотдачи на теплопоглощающей стенке ТЭБО от жидкого теплоносителя идентифицированы критериальные соотношения конвективной теплоотдачи. Для соотношения $Nu=6.134\cdot Re^{0.165}\cdot Pr_f^{0.1384}/Pr_{cr}^{1.333}\cdot Kr^{0.5345}$ максимальная погрешность в точках плана эксперимента составила 14.4~%.
- 5. На основе обработки экспериментальных данных сформирована зависимость $\alpha_{\infty}(I,T_f,T_x,T_g)$, которая обеспечивает более высокую точность по определению коэффициента теплоотдачи от жидкости на холодной стороне ТЭМО по сравнению с точностью экспериментального определения этого параметра.
- 6. На основе технологии Response Surface Optimization получены различные метамодели расчета холодильной мощности ТЭБО на основе полиномиальной аппроксимации. Метамодель на основе полного квадратичного полинома обеспечивает точность определения Q_x не менее 6.22 %, а метамодель на основе кубического полинома обеспечивает погрешность расчета целевой функции не более 0.5 %. Разработана и применена методика для поиска оптимального режима функционирования системы термостабилизации при произвольном целевом значении холодопроизводительности и температур теплоносителя и окружающего воздуха. Рассчитаны оптимальные значения факторов N_{mo} , N_{vent} , \dot{V}_f при различных уровнях фактора dT, при которых достигается заданное значение Q_x , и суммарная потребляемая мощность системы термостабилизации принимает минимальное значение.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ:

Публикации в изданиях, рекомендованных ВАК РФ

1. Гаганов А.В. Оптимизационное проектирование проточной части трубчатого теплообменного аппарата с использованием инструментария ANSYS Workbench

- /А.В. Гаганов, Е.Е. Куликова, А.В. Кретинин // Вестник Воронежского государственного технического университета. -2014. T. 10. № 6. C. 24-28.
- 2. Кретинин А.В. Оптимизация конструкции теплообменного аппарата методами вычислительной гидродинамики / А.В. Кретинин, Е.Е. Куликова, К.Д. Булыгин // Вестник Воронежского государственного технического университета. − 2015. Т. 11. № 5. С. 63-66.
- 3. Kretinin A.V. Neural Network Simulation of Multidisciplinary Processes in Thermoelectric Devices / A.V. Kretinin, D.P. Shmatov, E.E. Kulikova // Proceedings of the 2nd Russian-Pacific Conference on Computer Technology and Applications (RPC 2017). PP. 113-116. DOI: 10.1109/RPC.2017.8168080 (WoS).
- 4. Кретинин А.В. Численное моделирование теплообмена в жидкостных каналах термоэлектрического блока охлаждения / А.В. Кретинин, Д.Н. Галдин, Е.Е. Спицына, А.Н. Попков // Вестник Воронежского государственного технического университета. 2018. Т. 14. № 3. С. 86-93.
- 5. Кретинин А.В. Расчет неравномерности распределения компонента по охлаждающим каналам камеры жидкостного ракетного двигателя на основе моделирования в ANSYS CFX / А.В. Кретинин, Д.Н. Галдин, Е.Е. Спицына, А.Н. Попков // Вестник Воронежского государственного технического университета. 2018. Т. 14. N = 3. C. 61-66.
- 6. Mathematical modeling of hydrodynamics and heat exchange in liquid channels of the thermoelectric cooling module / A.V. Kretinin, D.P. Shmatov, S.L. Podval'ny, E.E. Spitsyna // J. Phys.: Conf. Ser. 2019 -1203 012049. doi:10.1088/1742-6596/1203/1/012049 (Scopus, WoS)

Статьи и материалы конференций

- 7. Кретинин А.В. Реализация методики решения задачи оптимизации конструкции теплообменного аппарата на платформе ANSYS Workbench / А.В. Кретинин, Е.Е. Куликова, К.Д. Булыгин// Физико-математическое моделирование систем: материалы XIII междунар. семинара. Воронеж: ФГБОУ ВО "Воронежский государственный технический университет", 2015. Ч. 2. С. 32–38.
- 8. Булыгин К.Д. Решение оптимизационных задач с использованием инструментария ANSYS Workbench [Текст] / Булыгин К.Д., Куликова Е.Е. // Гидравлические машины и системы транспортировки нефти и газа: сб. науч. тр. Воронеж: Издательско-полиграфический центр «Научная книга», 2015. С. 17-23.
- 9. Галдин Д.Н. Многодисциплинарное математическое моделирование и нелинейная оптимизация термоэлектрических модулей охлаждения/ Д. Н. Галдин, А. В. Кретинин, Е. Е. Спицына, И. В. Рощупкина // Гидравлические машины и системы транспортировки нефти и газа: сб. науч. тр. Воронеж: Издательско-полиграфический центр «Научная книга», 2018. С. 89-98.
- 10. Батаронов И.Г. Модель теплопередачи в проточном теплообменнике с термоэлектрическим охлаждающим элементом/ И.Г. Батаронов, А.В. Кретинин, В.Ф. Селиванов, Е.Е. Спицына, Т.А. Надеина // Альтернативная и интеллектуальная энергетика: материалы междунар. науч.-практ. конф. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2018. С. 119-121

11. Кретинин А.В. Математическое моделирование гидродинамики и теплообмена в жидкостных каналах термоэлектрического модуля охлаждения / А.В. Кретинин, С.Л. Подвальный, Д.П. Шматов, Е.Е. Спицына // Актуальные проблемы прикладной математики, информатики и механики: сб. тр. междунар. науч.-техн. конф. - Воронеж: Издательство «Научно-исследовательские публикации», 2019. С. 1338-1345.

Подписано в печать 27.03.2020 Формат 60х84/16. Бумага для множительных аппаратов. Усл. печ. л. 1,0. Тираж 80 экз. Зак. № 46

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14