На правах рукописи

Зайцев Владислав Дмитриевич

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ РАСЧЕТ ПОТОКА ЭНЕРГИИ И СПИНОВОГО УГЛОВОГО МОМЕНТА В ОСТРОМ ФОКУСЕ ВЕКТОРНЫХ ЛАЗЕРНЫХ ПУЧКОВ

1.3.6. - Оптика

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук

Самара – 2024

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Самарский национальный исследовательский университет имени академика С. П. Королева» на кафедре технической кибернетики и в Отделении «Институт систем обработки изображений - Самара» Курчатовского комплекса кристаллографии и фотоники федерального государственного бюджетного учреждения «Национальный исследовательский центр «Курчатовский институт».

Научный руководитель:

Котляр Виктор Викторович, доктор физико-математических наук, профессор.

Официальные оппоненты:

Лукин Владимир Петрович, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук, руководитель лаборатории когерентной и адаптивной оптики;

Петров Николай Владимирович, доктор физико-математических наук, профессор, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО», заведующий лабораторией квантовых процессов и измерений.

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, г. Москва.

Защита состоится 6 декабря 2024 года в 10:00 на заседании диссертационного совета 24.2.379.01, созданного на базе федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С. П. Королева», по адресу: 443086, г. Самара, Московское шоссе, д. 34.

С диссертацией можно ознакомиться в библиотеке и на сайте федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С. П. Королева» https://ssau.ru/resources/dis_protection/zaitsev.

Автореферат разослан «____»___2024 г.

Ученый секретарь диссертационного совета 24.2.379.01 к.ф.-м.н., доцент

Телегин А. М.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертации

Поиск новых закономерностей и новых оптических эффектов в остром фокусе когерентного лазерного света является актуальной задачей. В остром фокусе, который формируется сферическими линзами с высокой числовой апертурой (NA>0,8), нельзя использовать параксиальное приближение, а требуется рассчитывать все проекции векторов напряженности электромагнитного поля. Это достаточно трудная задача. Например, Е. Lommel в 1885 году описывал световое поле в фокусе с помощью рядов Бесселя. Разложение поля в фокусе по плоским волнам использовали Р. Debay (1909) и В.С. Гнатовский (1919). В работе Ричардса-Вольфа (1959) был разработан подход, который позволяет получать все проекции векторов напряженности электрического и магнитного полей вблизи фокуса с помощью однократных интегралов по азимутальному углу. В плоскости фокуса теория Ричардса-Вольфа дает точные значения величины светового поля. Этот формализм будет использоваться в данной работе.

Еще в 1873 году Е. Аббе открыл дифракционный предел, который равен половине длине волны света. И только в 2003 году R. Dorn с соавторами с помощью использования радиальной поляризации и кольцевой апертуры экспериментально преодолели дифракционный предел и получили фокусное пятно диаметром 0,45 от длины волны (λ). В дальнейшем много авторов улучшали данный результат. Например, был получен экспериментально круглый фокус с диаметром 0,44 λ (Котляр В.В. с соавторами, 2013), 0,42 λ (Prabakaran K. с соавторами, 2014), 0,40 λ (С.Т. Chong, 2008). Известно также, что с помощью узкой кольцевой диафрагмы или аксикона можно сформировать фокус в виде пучка Бесселя нулевого порядка, диаметр которого равен 0,36 λ . Но боковые лепестки такого фокуса могут достигать 20-30 % от максимума интенсивности. Поэтому в дальнейшем будут рассматриваться фокусные пятна с низким уровнем боковых лепестков. В работах Хониной С.Н. с соавторами (2010) исследовалось влияние продольной составляющей электрического поля на размер и форму фокусного пятна.

Остается невыясненным вопрос: при каком состоянии поляризации начального поля диаметр фокусного пятна будет минимальным?

Известно, что в сечении векторных пучков имеют место поляризационные сингулярности. Например, в поле с неоднородной линейной поляризацией могут быть точки (V-точки), в которых направление вектора линейной поляризации не определено. В поле с неоднородной эллиптической поляризацией могут быть точки (С-точки), в которых не определено направление оси эллипса поляризации, то есть точки с круговой особые поляризацией. Такие точки описываются индексом поляризационной сингулярности (индексом Стокса или индексом Пуанкаре-Хопфа). Наиболее полно поляризационные сингулярности и их индексы изучал I. Freund (1996, 2002). Однако обычно индекс поляризационной сингулярности рассчитывают для отдельной особой точки. Но в сечении векторного пучка может быть много особых точек и линий.

Нерешенным остается вопрос: как рассчитывать индекс поляризационной сингулярности всего пучка, вне зависимости от того, сколько и каких особых точек пучок имеет в своем сечении.

Пучки Пуанкаре в оптике известны после работы Beckley A.M. с соавторами (2010). Их состояние поляризации описывается двумя углами, задающими точку на поляризационной сфере Пуанкаре, и может быть однородным (линейная, эллиптическая и круговая поляризации) и неоднородным (азимутальная или радиальная). Но индекс поляризационной сингулярности для пучков Пуанкаре не рассчитывался. Кроме того, индекс поляризационной сингулярности для V-точек, в которых не определено направление линейной поляризации, ранее не рассчитывался с помощью формулы М.

Berry (2004), которая применяется для расчета топологического заряда скалярных параксиальных вихревых пучков.

Среди векторных пучков наиболее распространенными являются цилиндрические векторные пучки высокого порядка (Q. Zhan, 2009). Пучки с азимутальной и радиальной поляризацией являются частным случаем таких пучков. У таких пучков в сечении в начальной плоскости и в плоскости фокуса поляризация в каждой точке линейная. В работе Стафеева С.С. с соавторами (2020) показано, что у пучка с линейной поляризацией, хотя в фокусе также поляризация линейная, но вблизи фокуса (до и после) поляризация эллиптическая. Причем имеются области со спином разного знака, то есть области, в которых имеется как левая эллиптическая поляризация, так и правая эллиптическая поляризация.

Но обобщение этого результата на общее семейство цилиндрических векторных пучков произвольного порядка не было сделано.

В последнее время, благодаря появлению оптических сканирующих ближнепольных микроскопов различных типов, в остром фокусе были открыты интересные оптические эффекты: узлы из особых точек (W.T. Irvine с соавторами, 2008), оптические колеса (A. Aiello с соавторами, 2015), поляризационная лента Мебиуса (T. Bauer с соавторами, 2015), полная магнетизация (Y. Jiang с соавторами, 2013), обратный поток энергии (Котляр В.В. с соавторами, 2018), спин-орбитальная конверсия (O.G. Rodriguez-Herrera с соавторами, 2010), спиновый и орбитальный эффекты Холла (К.Y. Blokh с соавторами, 2011; H.Hehe с соавторами, 2021; С.С. Стафеев с соавторами, 2021).

Актуальным является поиск новых лазерных пучков с другими состояниями поляризации, у которых в начальной плоскости поляризация неоднородная линейная, а в фокусе имеет место спиновый эффект Холла. В данной работе теоретически показано, что в остром фокусе суперпозиции цилиндрического векторного пучка и пучка с линейной поляризацией также имеет место спиновый эффект Холла. Под спиновым эффектом Холла в фокусе в дальнейшем будем понимать формирования у пучка с начальной неоднородной линейной поляризацией в фокусе четного числа областей с эллиптической или круговой поляризацией с разными направлениями вращения (со спинами разных знаков).

Объектом исследования являются векторные вихревые лазерные пучки.

Предметом исследования служит использование новых подходов для определения оптических закономерностей светового поля вблизи острого фокуса для различных начальных вихревых векторных лазерных пучков, в том числе получение аналитических выражений для основных характеристик светового поля в фокусе на основе теории Ричардса-Вольфа.

Цель диссертационной работы

Аналитический и численный расчёт проекций вектора напряженности электрического поля, распределения интенсивности, продольных проекций потока энергии для сравнения размеров фокусных пятен и расчет спинового углового момента в остром фокусе для обнаружения спинового эффекта Холла для некоторых векторных вихревых лазерных пучков, в том числе для цилиндрических векторных пучков любого целого порядка и для их суперпозиции с пучком с линейной поляризацией.

Задачи исследования

Для достижения цели исследования были поставлены и решались следующие задачи:

1. Сравнить диаметры фокусных пятен, рассчитанных по интенсивности и по потоку энергии, для пучков с линейной, круговой поляризацией, а также для пучков с

радиальной и азимутальной поляризацией. Найти при какой поляризации формируется фокус с минимальным диаметром.

2. Рассчитать индекс поляризации и интенсивность в остром фокусе пучков Пуанкаре, поляризационное состояние которых определяют два угла, задающих точку на поляризационной сфере Пуанкаре.

3. Рассчитать продольную проекцию вектора спинового углового момента до и после фокуса цилиндрических векторных пучков высокого порядка и показать, что в самом фокусе нет спинового эффекта Холла, а вблизи фокуса есть спиновый эффект Холла.

4. Рассчитать продольную проекцию спинового углового момента в фокусе суперпозиции цилиндрического векторного пучка порядка m и пучка с линейной поляризацией и показать, что только при нечетном m в фокусе имеет место спиновый эффект Холла.

Научная новизна

1. Аналитически и численно показано, что распределение осевого потока энергии в остром фокусе света с круговой и линейной поляризацией одинаковые и обладают круговой симметрией. Также показано, что равны осевые потоки энергии для оптических вихрей с единичным топологическим зарядом и с радиальной или азимутальной поляризацией. Аналитически показано, что диаметр фокусного пятна, рассчитанного по потоку энергии, у света с круговой поляризацией меньше (при прочих равных условиях), чем у оптического вихря с азимутальной поляризацией.

параметров Стокса найден 2. С помощью индекс поляризационной сингулярности пучков Пуанкаре, он оказался равен топологическому заряду оптических вихрей, участвующих в формировании пучка Пуанкаре. С помощью формализма аналитические выражения Ричардса-Вольфа найдены для проекций вектора напряженности электрического поля вблизи острого фокуса данных пучков. Получено выражение для распределения интенсивности в плоскости фокуса. Число локальных максимумов (боковых лепестков) интенсивности в плоскости фокуса пропорционально величине индекса поляризационной сингулярности пучка.

3. Аналитически показано, ЧТО ДО после фокальной И плоскости цилиндрического векторного пучка высокого порядка формируется четное число локальных субволновых областей, где вектор поляризации в каждой точке вращается. В соседних областях векторы поляризации вращаются в разные стороны, так что продольная составляющая векторов спинового углового момента в этих соседних областях имеет противоположный знак. Такое пространственное разделение левого и правого вращения векторов поляризации демонстрирует наличие оптического спинового эффекта Холла.

4. Аналитически и численно показано, что в остром фокусе аксиальной суперпозиции цилиндрического векторного пучка порядка m и пучка с линейной поляризацией, при нечетном m имеет место спиновый эффект Холла. То есть, хотя такой пучок в начальной плоскости имеет неоднородную линейную поляризацию, в фокусе формируются области с эллиптической или круговой поляризации с чередующимися направлениями вращения (по часовой стрелке и против часовой стрелки).

Теоретическая и практическая значимость работы

В диссертационной работе разработаны несколько новых подходов к изучению оптических закономерностей в остром фокусе лазерного излучения: 1) определение диаметра фокусного пятна по потоку энергии, а не по интенсивности, 2) определение индекса поляризационной сингулярности векторных пучков аналогично определению топологического заряда скалярных оптических вихрей, 3) определение характеристик спинового эффекта Холла в области фокуса цилиндрических векторных пучков высокого

порядка.

Также значение полученных аналитических результатов в том, что они применимы для любой длины волны, любой числовой апертуры апланатической системы (идеальной сферической линзы) и для любого радиально-симметричного начального распределения амплитуды пучка.

Практическая ценность, полученных результатов, состоит в том, что 1) определение минимального фокусного пятна позволяет достигать предельного разрешения в оптической микроскопии, 2) от величины индекса поляризационной сингулярности векторных пучков зависит число боковых лепестков в фокусе, которые определяют структуру оптических ловушек для захвата и манипулирования микрочастицами, 3) спиновый эффект Холла в фокусе можно использовать в микромеханике в качестве оптического двигателя, когда в фокусе в двух соседних областях со спином разного знака вращаются две взаимодействующие микрочастицы в виде шестеренок. Параксиальные цилиндрические векторные пучки, у которых имеет место спиновый эффект Холла, можно использовать для передачи информации в беспроводных системах связи.

Методы исследования

Аналитические выражения для интенсивности, потока энергии и спинового углового момента в остром фокусе получены на основе теории Ричардса-Вольфа. Для моделирования распределений интенсивности используются исходные интегралы Ричардса-Вольфа и интегралы Дебая.

Защищаемые положения

1. Если с помощью идеальной сферической линзы с высокой числовой апертурой сфокусировать гауссов пучок с круговой поляризацией и гауссов оптический вихрь первого порядка с азимутальной поляризацией, то диаметр фокусного пятна (при прочих равных условиях), рассчитанного по полуспаду распределения интенсивности будет меньше у оптического вихря с азимутальной поляризацией. А если рассчитать диаметр фокусного пятна по полуспаду продольной составляющей модуля вектора Умова-Пойнтинга (по потоку энергии), то меньший диаметр будет у гауссова пучка с круговой поляризацией.

2. Индекс поляризационной сингулярности векторных лазерных пучков Пуанкаре равен топологическому заряду оптических вихрей, участвующих в формировании таких пучков. При острой фокусировке векторных лазерных пучков Пуанкаре число локальных максимумов интенсивности (боковых лепестков) в плоскости фокуса пропорционально величине индекса поляризационной сингулярности пучка.

3. Хорошо известные цилиндрические векторные пучки высокого порядка имеют неоднородную линейную поляризацию в начальной плоскости и в плоскости фокуса. Вблизи фокальной плоскости, то есть до и после фокуса, эти пучки формируют в своем сечении четное число локальных субволновых областей, где вектор поляризации в каждой точке вращается. В соседних областях векторы поляризации вращаются в разные стороны, так что продольная составляющая векторов спинового углового момента (плотность спина) в этих соседних областях имеет противоположный знак. Такое пространственное разделение левого и правого вращения векторов поляризации демонстрирует наличие оптического спинового эффекта Холла.

4. При острой фокусировке аксиальной суперпозиции цилиндрического векторного пучка высокого порядка (порядка m) и пучка с линейной поляризацией в плоскости фокуса при нечетном номере m формируются субволновые локальные области с поперечным вихревым потоком энергии и с ненулевой третьей проекцией Стокса (с ненулевой плотностью спина). Это означает, что такой пучок с нечетным m имеет в фокусе области эллиптической или круговой поляризации с чередующимися направлениями вращения (по часовой стрелке и против часовой стрелки). Такое

разделение в пространстве областей с разным направлением поляризации является спиновым эффектом Холла.

Достоверность результатов

Достоверность полученных результатов подтверждается согласием теоретических выводов с результатами численного моделирования. А также совпадением результатов моделирования, полученных разными способами: с помощью полученных аналитических выражений и с помощью прямого расчета интегралов Дебая.

Апробация диссертационной работы

Основные результаты работы докладывались на международных и всероссийских конференциях, в том числе: на международной конференции «Оптические технологии в телекоммуникациях», г. Самара (2020, 2021); г. Уфа (2022); на международной конференция «Информационные технологии и нанотехнологии», г. Самара (2021, 2022, 2023); на международной конференции «Holoexpo по голографии и прикладным оптическим технологиям» г. Сочи (2023); на всероссийской научной конференции с международным участием «Енисейская фотоника» г. Красноярск (2022); на международной конференции «Photonics and Electromagnetics Research Symposium» г. Ханчжоу, Китай (2021).

Публикации

Основные результаты диссертации опубликованы в 11 статьях, в журналах, индексируемых в информационно-аналитических системах научного цитирования SCOPUS / Web of Science, в том числе в 4 статьях в периодических изданиях, рекомендованных ВАК Минобрнауки России.

Личный вклад автора

Заключается в получении аналитических результатов и проведении моделирования, а также в обсуждении полученных результатов. Автор лично запрограммировал расчет интегралов Дебая в формализме Ричардса-Вольфа и проводил с помощью этой программы расчет основных характеристик светового поля вблизи острого фокуса для различных начальных вихревых векторных лазерных пучков.

Структура работы

Диссертация состоит из введения, трёх глав, заключения и списка литературы. Текст изложен на 137 страницах машинописного текста, содержит 65 рисунков, 4 таблицы и список литературы из 132 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснованы актуальность темы, новизна, теоретическая и практическая значимость и достоверность результатов работы. Проведён обзор научной литературы по теме диссертационного исследования и сформулированы основные положения, выносимые на защиту.

В первой главе с помощью формул Ричардса-Вольфа производилось сравнение распределения интенсивности и продольной компоненты вектора Умова-Пойнтинга (осевого потока энергии) в плоскости острого фокуса. Для этого были записаны аналитические выражения проекций вектора напряженности электрического поля, интенсивности и проекции на оптическую ось вектора Умова-Пойнтинга $\mathbf{P} = [c/(8\pi)] \operatorname{Re}[\mathbf{E} \times \mathbf{H}^*]$, где c – скорость света в вакууме, Re – вещественная часть числа, $\mathbf{E} \times \mathbf{H}$ – векторное произведение, * – комплексное сопряжение (далее опустим постоянную $c/(8\pi)$), в фокусе при острой фокусировке света апланатической системой с линейной, круговой, радиальной и азимутальной поляризацией при прочих равных условиях. С помощью формул Ричардса-Вольфа моделировалась фокусировка света различной поляризации апланатическим объективом с числовой апертурой NA=0,95. Начальный

волновой фронт во всех случаях считался плоским или вихревым.

Таблица 1 - Формулы, описывающие распределение интенсивности и осевого потока энергии в остром фокусе света с разной начальной поляризацией

Тип	Интенсивность в фокусе	Осевой поток энергии в	
поляризации		фокусе	
Линейная	$I_{0.0}^2 + I_{2.2}^2 +$	$I_{0,0}^2 - I_{2,2}^2$	
поляризация			
	$2I_{0,0}I_{2,2}\cos 2\phi + 4I_{1,1}^2\sin^2\phi$		
Круговая	$I_{20}^2 + I_{20}^2 + 2I_{21}^2$	$I_{0,0}^2 - I_{2,2}^2$	
поляризация			
Радиальная	$(I - I)^2 + AI^2$	$(I_{0,1} - I_{2,1})^2$	
поляризация	$(I_{0,1} - I_{2,1}) + 4I_{1,0}$		
Радиальная	$1 (2 - 2)^2 + 1 (2 - 2)^2 = 1$	$I_{0,2}^2 + I_{0,0}^2 - I_{2,0}^2 - I_{2,2}^2$	
поляризация	$-\frac{1}{2}(I_{0,0}-I_{2,0}) + \frac{1}{2}(I_{2,2}-I_{0,2}) + 2I$		
и оптический			
вихрь			
Азимутальная	1, 2 , 1 , 2	$I_{22}^2 + I_{222}^2 - I_{222}^2 - I_{222}^2$	
поляризация	$\frac{1}{2} \left(I_{0,0} + I_{2,0} \right)^2 + \frac{1}{2} \left(I_{0,2} + I_{2,2} \right)^2$		
и оптический	2 2		
вихрь			

В Таблице 1 использованы обозначения интегралов, зависящих только от радиальной переменной *r*:

$$I_{\nu,\mu} = \left(\frac{4\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \cos^{1/2}(\theta) A(\theta) e^{ikz\cos\theta} J_{\mu}(x) d\theta, \qquad (1)$$

где λ – длина волны света, f – фокусное расстояние апланатической системы, $x = kr \sin \theta$, k – волновое число света, $J_{\mu}(x)$ – функция Бесселя первого рода и $NA = \sin \theta_0$ – числовая апертура, начальная функция амплитуды $A(\theta)$, (r, ϕ) – полярные координаты в плоскости фокуса. Из Таблицы 1 следует, что распределение осевого потока энергии в фокусе для света с линейной и круговой поляризацией одинаковые. Это значит, что фокусное пятно, измеренное по потоку энергии для света с линейной и круговой поляризацией (при прочих равных условиях) будет круглым и одинаковым по диаметру. Также из Таблицы 1 видно, что у оптического вихря с единичным топологическим зарядом с радиальной и азимутальной поляризацией осевые потоки энергии в фокусе тоже одинаковые, а значит и фокусные пятна у них будут одинаковые. Из Таблицы 1 видно, что все распределения интенсивности и потока энергии вблизи оптической оси пропорциональны квадрату функции Бесселя нулевого порядка, которая входит в интеграл $I_{0,0}^2$. Так как световая энергия у всех полей из Таблицы 1 одинаковая (одинаковая начальная амплитуда), то по величине интенсивности или потока на оптической оси можно судить о величине диаметра фокусного пятна: чем больше интенсивность или поток энергии на оптической оси, тем меньше диаметр фокусного пятна. Из Таблицы 1 видно, что больше всех интенсивность на оптической оси у оптического вихря с азимутальной поляризацией: $(I_{0,0} + I_{2,0})^2 / 2$.

В Таблице 2 показаны размеры фокусных пятен по обеим декартовым координатам, рассчитанным по полуспаду распределения интенсивности и потока энергии в длинах волн (λ=532 нм). Полученные распределения интенсивности и продольной составляющей вектора Умова-Пойнтинга показаны на рис. 1 и 2, соответственно.

Таблица 2 - Величины диаметров фокусных пятен (NA=0,95) в длинах волн, рассчитанные по полуспаду интенсивности и осевой проекции потока энергии для начальной плоской волны с линейной, круговой, радиальной поляризацией, и для начального оптического вихря первого порядка с радиальной и азимутальной поляризацией

Тип	Интенсивность <i>I</i> , отн. ед.		Продольный поток энергии S _z ,	
поляризации			отн. ед.	
	FWHMx, λ	FWHMy, λ	FWHMx, λ	FWHMy, λ
Круговая	0,5997	0,5997	0,5357	0,5357
Линейная	0,7305	0,5028	0,5357	0,5357
Радиальная	0,6327	0,6327	-	-
Радиальная+	1,0747	1,0747	0,5573	0,5573
вихрь				
Азимутальная +	0,5346	0,5346	0,5566	0,5566
вихрь				

Из Таблицы 2 видно, что для круглых фокусных пятен наименьший диаметр, как и предсказывает теория, у оптического вихря с азимутальной поляризацией, измеренного по интенсивности (FWHM=0,5350). Почти такой же по величине (всего на 0,14%) больше) диаметр фокусных пятен для света с линейной и круговой поляризацией, измеренный по потоку энергии (FWHM=0,5358). Немного больше (на 4%) диаметр фокусного пятна для вихря с азимутальной поляризацией, но измеренного по потоку энергии (FWHM=0,5573λ). Еще на 7% больше диаметр фокусного пятна для круговой поляризации, измеренный по интенсивности (FWHM=0,5998λ). И еще больше на 5% диаметр фокусного пятна для радиальной поляризации, измеренный по интенсивности (FWHM=0,6333). Таким образом, меньшее фокусное пятно меньше большего из фокусных пятен на 15%. Заметим, что эллиптическое фокусное пятно имеет размер меньшего диаметра по интенсивности на 6% меньше минимального круглого фокусного пятна (FWHM=0,5029). С увеличением числовой апертуры размеры фокусных пятен уменьшаются, но соотношение между ними остается почти таким же. На рис. 1 показаны сечения интенсивности фокусного пятна, рассчитанного по формулам Ричардса-Вольфа для длины волны 532 нм и числовой апертуры 0,95. Освещающий пучок имел плоский фронт (или оптический вихрь с зарядом 1) и разное состояние поляризации. Соотношение размеров фокусных пятен по полуспаду интенсивности, которое следует из Рисунка 1, подтверждает сказанное ранее. Из Рисунка 1 видно, что в случае оптического вихря с азимутальной поляризацией фокусное пятно немного меньше, чем фокусное пятно для круговой поляризации, но боковой лепесток для круговой поляризации (около 4%) в 5 раз меньше, чем у азимутальной поляризации (около 20%).

На Рисунке 2 показаны сечения фокусного пятна, рассчитанного по потоку энергии. Видно, что в этом случае фокусное пятно оптического вихря с азимутальной (радиальной) поляризаций немного больше, чем фокусное пятно пучка с круговой (линейной) поляризацией. И боковой лепесток у фокуса на Рисунке 2 для азимутальной поляризации также в 5 раз больше, чем у фокуса для круговой поляризации.

Рисунок 1 – Сечение интенсивности в фокусе при фокусировке света различной поляризации

Рисунок 2 – Сечения продольной компоненты вектора Умова-Пойнтинга в фокусе

Так же с помощью формализма Ричардса-Вольфа рассмотрена фокусировка света с круговой поляризацией плоскими дифракционными линзами. Было показано, что при увеличении числовой апертуры линзы размер фокусного пятна сначала уменьшается, а потом начинает расти. Минимальное фокусное пятно наблюдается при NA = 0,96 (FWHM = $0,55\lambda$) Рисунок За. При дальнейшем увеличении числовой апертуры дифракционной линзы рост продольной составляющей приводит к увеличению размера фокусного пятна. При замене плоской дифракционной линзы на апланатический объектив размер фокусного пятна монотонно уменьшается при увеличении числовой апертуры Рисунок Зб. То есть с помощью дифракционной линзы можно получить более острый фокус, чем с помощью идеального объектива.

Рисунок 3 – Зависимость диаметра фокусного пятна по полуспаду интенсивности от числовой апертуры плоской дифракционной линзы при фокусировке плоской волны с круговой поляризацией (а) и зависимость диаметра фокусного пятна по полуспаду интенсивности от числовой апертуры апланатического объектива при фокусировке плоской волны с круговой поляризацией (б)

Вторая глава посвящена расчёту индекса поляризационной сингулярности (ИПС) любых векторных световых полей аналогично расчету топологического заряда (ТЗ) скалярных оптических вихрей по формуле М. Берри:

$$TC = \frac{1}{2\pi} \lim_{r \to \infty} \operatorname{Im} \int_{0}^{2\pi} d\varphi \frac{\partial E(r, \varphi) / \partial \varphi}{E(r, \varphi)}.$$
(2)

Световых полей с неоднородной поляризацией, которые описываются в начальной плоскости с помощью векторов Джонса, известно целое множество. В работе рассчитан ИПС для некоторых таких полей. Были рассчитаны ИПС для векторных полей с цилиндрической поляризацией (радиальной и азимутальной) высших порядков, с гибридной радиально-циркулярной азимутально-циркулярной) (и поляризацией произвольных порядков, для полей с несколькими точками и с несколькими линиями поляризационной сингулярности, для пучков Пуанкаре, а также для полей с поляризацией, изменяющейся от центра к периферии. Для характеризации векторных световых полей с поляризационной сингулярностью вместо топологического заряда используют индексы поляризационной сингулярности. Это связанные между собой индекс Стокса и индекс Пуанкаре-Хопфа. Точки поляризационной сингулярности неоднородно поляризованных световых полей имеются такие: V-точки и C-точки. Они определяют топологию потоков локальных векторов поляризации в сечении пучка. Vточки – это точки сингулярности (неопределенности) направления вектора локальной линейной поляризации. В этой точке у светового поля интенсивность равна нулю. Сточки – это точки, в которых не определено направление большой оси локального эллипса поляризации. То есть это точки, в которых поляризация круговая. Если в поле есть линии неопределенности направления линейной поляризации – это V-линии (или Lлинии). А линии круговой поляризации называются С-линиями. Индексы сингулярности для V- и C-точек, а также для L- и C-линий определяются с помощью параметров Стокса и комплексных полей Стокса. Например, для пучка Пуанкаре

$$E(\theta,\varphi) = \begin{pmatrix} a(\theta,\varphi) \\ b(\theta,\varphi) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} ae^{-in\varphi} + be^{in\varphi} \\ iae^{-in\varphi} - ibe^{in\varphi} \end{pmatrix},$$
(3)

где a и b – постоянные, n – T3, комплексное поле Стокса будет иметь вид:

I

$$S_c = S_1 + iS_2 = 2|ab|\exp(2in\varphi - i\arg a + i\arg b).$$
(4)

Подставив комплексную амплитуду (4) в формулу Берри (2) получим, что индекс Стокса о равен удвоенному индексу Пуанкаре-Хопфа η и равен:

$$\sigma = 2\eta = \begin{cases} 2n, \ |a| > 0, \ |b| > 0, \\ 0, \ |a| = 0, \text{ или } |b| = 0. \end{cases}$$
(5)

Получается, что индекс Пуанкаре-Хопфа равен топологическому заряду n, а само поле имеет неоднородную линейную поляризацию, если модули a и b оба отличны от нуля. И поле имеет круговую поляризацию и нет сингулярности ($\eta = 0$), если либо a, либо b равны нулю. Соответственно, в сечении пучков Пуанкаре в центре на оптической оси имеется точка поляризационной сингулярности с индексом равным n. Это означает, что поток локальных векторов с линейной поляризации при обходе по замкнутому контуру вокруг оптической оси совершает n полных оборотов на угол 2π . На рис. 4 показаны карты векторных полей (распределения векторов линейной поляризации) для поля (3) с радиальной и с азимутальной поляризацией первого и третьего порядка.

Подсчёт областей с определённым направлением поляризации (например, правым) на рис.4 подтверждает, что индекс Пуанкаре-Хопфа поля (3) равен *n*.

В третьей главе с помощью интегралов Дебая и численного моделирования показано, что вблизи острого фокуса (до фокуса и за фокусом) генерируются локальные субволновые области с эллиптической и круговой поляризацией разного знака (разного

спина). Известно, что третья компонента Стокса S_3 указывает на круговую или эллиптическую поляризацию светового поля. Если $S_3 = 0$, то поле имеет только линейную поляризацию. Продольная составляющую вектора спинового углового момента (СУМ) равна третьей компоненте Стокса и близи острого фокуса для цилиндрического векторного поля порядка *n* имеет вид:

$$S_{z} = S_{3} = 2 \operatorname{Im} \left(E_{x}^{*} E_{y} \right) \Box \ 2kz \sin(2(n-1)\varphi) \left(I_{0} R_{2} - I_{2} R_{0} \right), \tag{6}$$

где $R_0 = I_{0,n}(z=0), I_0 = \overline{I}_{0,n}, R_2 = I_{2,n-2}(z=0), I_2 = \overline{I}_{2,n-2},$

$$\overline{I}_{\nu,\mu} = \left(\frac{4\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \cos^{3/2}\left(\theta\right) A(\theta) J_{\mu}(\xi) d\theta.$$
(7)

Как видно из уравнения (6), в самом фокусе (z = 0), $S_z=S_3 = 0$ и, следовательно, в каждой точке фокальной плоскости поляризация линейна. Однако при малых расфокусировках ($kz \ll 1$), $S_3 \neq 0$ и появляются области с эллиптической и круговой поляризацией, если $n \neq 1$. Условие $n \neq 1$ демонстрирует, что порядок n = 1 не нарушают вращательную симметрию пучка, и области с ненулевым СУМ не могут появиться. Таким образом, такие области могут появиться только из-за нарушения симметрии при $n \neq 1$. В областях, где до фокуса (z < 0) СУМ была отрицательной ($S_3 < 0$), после фокуса (z > 0) она становится положительной ($S_3 > 0$), и наоборот. Вблизи фокальной плоскости на окружности определенного радиуса с центром на оптической оси располагаются центры 4(n-1) локальных субволновых областей с эллиптической (рис.5). В таких соседних областях вектор поляризации вращается в противоположных направлениях (по часовой или против часовой стрелки). Поскольку при $n \neq 1$ вблизи фокуса светового поля появляются области с левой и правой круговой поляризацией (области с разным «спином»), можно заключить, что вблизи фокуса (до и после него) возникает спиновый эффект Холла, хотя в самой фокальной плоскости этот эффект исчезает.

Рисунок 5 – Распределения интенсивности (столбец 1), радиальной составляющей вектора Умова- Пойнтинга (столбец 2), нормированной на максимум продольной составляющей вектора СУМ (столбец 3) и нормированной на максимум продольной составляющей вектора ОУМ (столбец 4) остро сфокусированного гауссова пучка с цилиндрической поляризацией 4-го порядка до фокуса (строка 1) и после фокуса (строка 2). Порядок пучка n=4, расстояние до и после фокуса равно длине волны, NA=0,95. На всех рисунках светлый и черный цвета означают соответственно максимум и минимум. Метки шкалы (в нижнем левом углу) обозначают 1 мкм.

В третьей главе также рассмотрена острая фокусировка осевой суперпозиции цилиндрического векторного пучка высокого порядка и пучка с линейной поляризацией. Для начального светового поля вектора Джонса электрического и магнитного полей имеют вид:

$$E_m(\varphi, a) = \begin{pmatrix} \cos m\varphi - a \\ \sin m\varphi \end{pmatrix} = \begin{pmatrix} \cos m\varphi \\ \sin m\varphi \end{pmatrix} - a \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad H_m(\varphi, a) = \begin{pmatrix} -\sin m\varphi \\ \cos m\varphi - a \end{pmatrix}.$$
 (8)

Получены явные выражения для всех проекций векторов напряженности электрического поля в плоскости острого фокуса:

$$E_{x}(r,\phi) = i^{m-1} \left(\cos(m\phi) I_{0,m} + \cos((m-2)\phi) I_{2,m-2} \right) + ia \left(I_{0,0} + \cos(2\phi) I_{2,2} \right),$$

$$E_{y}(r,\phi) = i^{m-1} \left(\sin(m\phi) I_{0,m} - \sin((m-2)\phi) I_{2,m-2} \right) + ia \sin(2\phi) I_{2,2},$$

$$E_{z}(r,\phi) = 2i^{m} \cos((m-1)\phi) I_{1,m-1} + 2a \cos\phi I_{1,1}.$$
(9)

Подставляя проекции поля (9) в формулу для продольной проекции спинового углового момента S_z, которая совпадает с третьей проекцией вектора Стокса s₃:

$$s_3 = S_z = 2\operatorname{Im}\left(E_x^* E_y\right). \tag{10}$$

получим:

$$s_{3} = S_{z} (r, \varphi) = \begin{cases} 2a (-1)^{(m-1)/2} \left[\sin ((m-2)\varphi) \times (I_{0,0}I_{2,m-2} - I_{2,2}I_{0,m}) - (-\sin (m\varphi) (I_{0,0}I_{0,m} - I_{2,2}I_{2,m-2}) \right], & m = 2p + 1, \\ 0, & m = 2p, \quad p = 0, 1, 2, ... \end{cases}$$
(11)

Из (11) видно, что при четном *m* в фокусе поля (8) нет областей с эллиптической поляризацией. При нечетном *m*, и если $a \neq 0$, в фокусе имеется 2m локальных областей, в которых свет имеет эллиптическую поляризацию. На рис.6 показана *s3* (*m*=3, *NA*=0,95, λ =633 нм) в фокусе поля (8). Видны области со спином разного знака.

Рисунок 6 – Третья компоненты нормированного вектора Стокса (11) при фокусировке векторного поля (8) третьего (т = 3) порядка при разном а: 1/2 (а), 1 (б)

В Заключении диссертации приведены основные результаты

1. Показано, что вблизи фокальной плоскости начального цилиндрического векторного пучка произвольного целого порядка (до и после фокуса) генерируется четное число локальных субволновых областей, где вектор поляризации в каждой точке вращается. Кроме того, в соседних областях векторы поляризации вращаются в разные стороны, так что продольная составляющая вектора спинового углового момента в этих

соседних областях имеет противоположный знак. Кроме того, после прохождения пучком фокуса, направление вращения вектора поляризации в каждой точке поперечного сечения пучка меняется на противоположное. Такое пространственное разделение левого и правого вращения векторов поляризации демонстрирует наличие оптического спинового эффекта Холла.

2. Аналитически и численно показано, что распределение осевого потока энергии в остром фокусе идеальной сферической линзы для света с круговой и линейной поляризацией одинаковые и обладают круговой симметрией. Также показано, что равны осевые потоки энергии для оптических вихрей с единичным топологическим зарядом и с радиальной или азимутальной поляризацией. Минимальный диаметр (при прочих равных условиях, числовая апертура больше 0,95) имеет фокусное пятно, измеренное по интенсивности для оптического вихря с азимутальной поляризацией. Немного больше (на доли процента) диаметр фокусного пятна, рассчитанного по потоку энергии для света с круговой или линейной поляризацией.

3. Для разных векторных и гибридных световых полей, в том числе для полей с многими точками поляризационной сингулярности, найдены индексы поляризационной сингулярности по известной формуле М. Берри, которая применяется обычно для нахождения топологического заряда скалярных вихревых световых полей. Показано, что у полей, состояние поляризации которых зависит только от полярного угла в сечении пучка, могут быть либо линии поляризационной сингулярности, исходящие из центра, либо одна точка поляризационной сингулярности, находящаяся в центре сечения пучка. Если поляризационное состояние векторного поля зависит от обеих полярных координат, то такое поле может иметь несколько точек поляризационной сингулярности, расположенных в разных местах в сечении пучка.

4. С помощью параметров Стокса найден индекс поляризационной сингулярности пучков Пуанкаре. Он оказался равен топологическому заряду оптических вихрей, участвующих в формировании пучка Пуанкаре. С помощью формализма Ричардса-Вольфа аналитически найдены аналитические выражения для проекций вектора напряженности электрического поля вблизи острого фокуса данных пучков. Получено выражение для распределения интенсивности в плоскости фокуса, и найдены параметры, при которых фокусное пятно имеет круглую форму. Число локальных максимумов интенсивности в плоскости фокуса пропорционально величине индекса поляризационной сингулярности пучка.

5. Аналитически и численно рассмотрено спин-орбитальное преобразование в остром фокусе аксиальной суперпозиции цилиндрического векторного пучка высокого порядка (порядка *m*) и пучка с линейной поляризацией. Показано, что в фокальной плоскости формируются субволновые локальные области с поперечным вихревым потоком энергии и с ненулевой третьей проекцией Стокса (продольная компонента спинового углового момента) при нечетном числе *m*. Это означает, что такой пучок с нечетным *m* имеет в фокусе области эллиптической или круговой поляризации с чередующимися направлениями вращения (по часовой стрелке и против часовой стрелки). При четном *m* поле линейно поляризовано в каждой точке фокальной плоскости и поперечный поток энергии отсутствует. Такое разделение в пространстве областей с разным направлением поляризации демонстрирует наличие спинового эффекта Холла.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Стафеев, С.С. Минимальное субволновое фокусное пятно по потоку энергии / С.С. Стафеев, В.Д. Зайцев // Компьютерная оптика. – 2021. – Т. 45, № 5. – С. 685-691. DOI: 10.18287/2412-6179-СО-908

2. Котляр, В.В. Индексы поляризационной сингулярности, аналогичные топологическому заряду, для световых полей с неоднородной поляризацией / В.В. Котляр, А.А. Ковалёв, В.Д. Зайцев // Компьютерная оптика. – 2022. – Т. 46, № 5. – С. 671-681. DOI: 10.18287/2412-6179-CO-1126.

3. Котляр В.В. Индекс поляризационной сингулярности пучков Пуанкаре/В. В. Котляр, А. А. Ковалёв, С.С. Стафеев, В.Д. Зайцев // Известия РАН. Серия физическая. – 2022. – Т.86, №10. – С. 1400-1405. DOI: 10.31857/ S0367676522100118.

4. Стафеев, С.С. Фокусировка цилиндрических векторных пучков дробных порядков / С.С. Стафеев, В.Д. Зайцев // Компьютерная оптика. – 2021. – Т. 45, № 2. – С. 172-178. – DOI: 10.18287/2412-6179-СО-805.

5. Kotlyar, V.V. Minimal Focal Spot Size Measured Based on Intensity and Power Flow/ V.V. Kotlyar, S.S. Stafeev, V.D. Zaitsev // Sensors. – 2021. –Vol. 21(16). –P. 5505. DOI: 10.3390/s21165505.

6. Stafeev, S.S. Tight focusing cylindrical vector beams with fractional order / S.S. Stafeev, A.G. Nalimov, V.D. Zaitsev, V.V. Kotlyar // J. Opt. Soc. Am. B. – 2021. – Vol. 38(4). – P. 1090–1096. DOI:10.1364/JOSAB.413581

7. Kotlyar, V.V. Spin Hall Effect before and after the Focus of a High-Order Cylindrical Vector Beam / V.V. Kotlyar, S.S. Stafeev, A.A. Kovalev, V.D. Zaitsev // Appl. Sci. – 2022. – Vol. 12(23). – P. 12218. DOI: 10.3390/app122312218.

8. Zaitsev, V.D. Focusing of vector beams with fractional-order azimutal polarization / V.D. Zaitcev, S.S. Stafeev, V.V. Kotlyar // Proc. SPIE. – 2021. – Vol.11793. – P. 117930O. DOI: 10.1117/12.2593076.

9. Zaitsev, V.D. Focusing of cylindrical vector beams with an order from zero to one and with an order greater than one / V.D. Zaitsev, S.S. Stafeev, V.V. Kotlyar // IEEE Explore: 2021 International Conference on Information Technology and Nanotechnology (ITNT). – 2021. – P. 1-4. DOI: 10.1109/ITNT52450.2021.9649087.

10. Котляр, В.В. Острая фокусировка осевой суперпозиции цилиндрического векторного пучка высокого порядка и пучка с линейной поляризацией / В.В. Котляр, С.С. Стафеев, В.Д. Зайцев // Компьютерная оптика. – 2023. – Т. 47, № 1. – С. 5-15. – DOI:10.18287/2412-6179-CO-1165.

11. Стафеев, С.С. Минимальный размер фокусного пятна при фокусировке света круговой поляризации / С.С. Стафеев, В.Д. Зайцев, В.В. Котляр // Компьютерная оптика. – 2023. – Т. 47, № 3. – С. 361-366. – DOI: 10.18287/2412-6179-CO-1247.